甲乙两人各有一个箱子,甲的箱子里面放有个红球,个白球(,且);乙的箱子里面放有2个红球,1个白球,1个黄球.现在甲从自己的箱子里任取2个球,乙从自己的箱子里任取1个球.若取出的3个球颜色都不相同,则甲获胜.
(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大?并求甲获胜的概率的最大值.
(2) 当甲获胜的概率取得最大值时,求取出的3个球中红球个数的分布列.
(1) 甲应在箱子里放2个红球2个白球才能使自己获胜的概率最大. 他获胜的概率的最大值为 (2)ξ 0 1 2 3 P
解析试题分析:(1)要想使取出的3个球颜色都不相同,则乙必须取出黄球,甲取出的两个球为一个红球一个白球,乙取出黄球的概率是,甲取出的两个球为一个红球一个白球的概率是,所以取出的3个球颜色全不相同的概率是,即甲获胜的概率为,由,且,所以,当时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜的概率最大. 他获胜的概率的最大值为. 7分
(2)ξ的取值为0,1,2,3.
, ,
, ,
ξ的分布列为
14分ξ 0 1 2 3 P
考点:概率及分布列
点评:第一问求概率最值问题结合了不等式,学生不易想到,第二问求分布列的题目主要分3步:1,找到随机变量可以取得值,2,求出各随机变量对应的概率,3,将上述数据汇总成分布列
科目:高中数学 来源: 题型:解答题
)袋中装有大小相同的黑球、白球和红球共10个。已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是
(1)求袋中各色球的个数;
(2)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的分布列及数学期望Eξ和方差Dξ;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(1)从1,2,3,4,5五个数中依次取2个数,求这两个数的差的绝对值等于1的概率;
(2)△ABC中,∠B=60°,∠C=45°,高AD=,在BC边上任取一点M,求 的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
为了保养汽车,维护汽车性能,汽车保养一般都在购车的4S店进行,某地大众汽车4S店售后服务部设有一个服务窗口专门接待保养预约。假设车主预约保养登记所需的时间互相独立,且都是整数分钟,对以往车主预约登记所需的时间统计结果如下:
登记所需时间(分) | 1 | 2 | 3 | 4 | 5 |
频率 | 0.1 | 0.4 | 0.3 | 0.1 | 0.1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
口袋中有大小、质地均相同的7个球,3个红球,4个黑球,现在从中任取3个球。
(1)求取出的球颜色相同的概率;
(2)若取出的红球数设为,求随机变量的分布列和数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
从编号为1,2,3,4,5的五个形状大小相同的球中,任取2个球,求:(1)取到的这2个球编号之和为5的概率;(2)取到的这2个球编号之和为奇数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某品牌汽车4S店对最近100位采用分期付款的购车者进行统计,统计结果如下表所示:
付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
频数 | 40 | 20 | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某校设计了一个实验考查方案:考生从道备选题中一次性随机抽取道题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中道题的便可通过.已知道备选题中考生甲有道题能正确完成,道题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.
(1)求甲、乙两考生正确完成题数的概率分布列,并计算其数学期望;
(2)请分析比较甲、乙两考生的实验操作能力.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.
(Ⅰ)求X的分布列;
(Ⅱ)求X的数学期望E(X).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com