精英家教网 > 高中数学 > 题目详情
若函数f(x)=ax2+20x+14(a>0)对任意实数t,在闭区间[t-1,t+1]上总存在两实数x1,x2,使得|f(x1)-f(x2)|≥8成立,则实数a的最小值为
 
考点:函数恒成立问题
专题:函数的性质及应用
分析:结合二次函数的图象可知,当且仅当区间[t-1,t+1]的中点是对称轴时,只要满足[t-1,t+1]上总存在两实数x1,x2,使得|f(x1)-f(x2)|≥8成立,则对其它任何情况必成立.
解答: 解:因为a>0,所以二次函数f(x)=ax2+20x+14的图象开口向上.

在闭区间[t-1,t+1]上总存在两实数x1,x2,使得|f(x1)-f(x2)|≥8成立,
只需t=-
10
a
时f(t+1)-f(t)≥8,
即a(t+1)2+20(t+1)+14-(at2+20t+14)≥8,
即2at+a+20≥8,将t=-
10
a
代入得a≥8.
所以a的最小值为8.
故答案为8
点评:本题考查了利用函数的最值研究恒成立问题的思路,同时结合函数图象分析问题是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=3
e1
-2
e2
b
=4
e1
+
e2
e1
=(1,0),
e2
=(0,1),求
a
b
,|
a
+
b
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2
3
sinxcosx+1,x∈R.
(1)求f(x)最小正周期和最大值.
(2)求f(x)的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式x2-2x+m>0对任何实数x都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an•an+1=2n,则
a4a1
a2a3
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在电视台举行的“十八大知识竞赛”中,答对一题得1分,弃权得0分,答错扣1分,甲队答其中一题的得分X的分布列如
下:
X-101
Pa 
1
3
c
若E(X)=
1
3
,则D(X)的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设|
a
|=2
3
,|
b
|=3,
a
b
=-2.则|
a
-
b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-
1
2
+
sin
5
2
x
2sin
x
2
,x∈[
π
6
3
].
(1)将f(x)表示成cosx的多项式;
(2)求f(x)的最小值.

查看答案和解析>>

同步练习册答案