精英家教网 > 高中数学 > 题目详情
19.如图四棱锥E-ABCD,底面四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.
(Ⅰ)求证:AC⊥平面BED;
(Ⅱ)若∠ABC=120°,AB=2,AE=2,求AE与平面BED所成角的大小.

分析 (Ⅰ)根据线面垂直的判定定理即可证明:AC⊥平面BED;
(Ⅱ)由(Ⅰ)可知,AE与平面BED所成角为∠AEG,求出AG,即可求AE与平面BED所成角的大小.

解答 (Ⅰ)证明:∵四边形ABCD为菱形,
∴AC⊥BD,
∵BE⊥平面ABCD,
∴AC⊥BE,
∵BD∩BE=B,
∴AC⊥平面BED;
(Ⅱ)解:由(Ⅰ)可知,AE与平面BED所成角为∠AEG.
∵∠ABC=120°,AB=2,
∴AG=$\sqrt{3}$,
∴sin∠AEG=$\frac{\sqrt{3}}{2}$,
∴∠AEG=60°.

点评 本题主要考查线面垂直的判定,以及线面角的计算,要求熟练掌握相应的判定定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=x+$\frac{4}{x}$,g(x)=2x+a,若?x1∈[$\frac{1}{2}$,3],?x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围是(  )
A.a≤1B.a≥1C.a≤0D.a≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.有A、B、C、D、E五位学生的数学成绩x与物理成绩y(单位:分)如下表:
x8075706560
y7066686462
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若学生F的数学成绩为90分,试根据(1)求出的线性回归方程,预测其物理成绩(保留整数)
(参考数值:80×70+75×66+70×68+65×64+60×62=23190$8{0^2}+7{5^2}+7{0^2}+6{5^2}+6{0^2}=24750,\hat b=\frac{{\sum_{i=1}^5{x_i}{y_i}-n\bar x\bar y}}{{\sum_{i=1}^5x_i^2-n{{\bar x}^2}}},\hat a$=$\overline{y}$$-\hat b$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在各项均为正数的等比数列{an}中,若a5a6=9,则log3a1+log3a2+…+log3a10=(  )
A.12B.2+log35C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆${C_1}:{(x-2)^2}+{(y-2)^2}=9$,圆C2:(x+1)2+(y+4)2=25,圆C1与圆C2的位置关系为(  )
A.外切B.相离C.相交D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数$f(x)=2sin({ωx+\frac{π}{6}})({ω>0})$的图象与x轴交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,把函数f(x)图象沿x轴向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是(  )
A.在$[{\frac{π}{4},\frac{π}{2}}]$上是增函数
B.其图象关于直线$x=-\frac{π}{4}$对称
C.函数g(x)是奇函数
D.当$x∈[{\frac{π}{6},\frac{2π}{3}}]$时,函数g(x)的值域是[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数y=sinx+$\sqrt{3}$cosx的周期,对称轴方程并指出图象可由正弦曲线经过怎样的变化得到.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,函数f(x)的图象是折线段ABC,其中点A,B,C的坐标分别为(0,4),(2,0),(6,4),则f{f[f(2)]}=(  )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{1-|x-2|,x∈[1,3]}\\{3f(\frac{x}{3}),x∈(3,+∞)}\end{array}\right.$,设集合P={x|f(x)=m,0<m<1}(m为常数)的元素为xi(i=1,2,3…).其中x1≤x2≤x3≤x4≤…,则当n∈N*时,x1+x2+x3+x4+…+x2n=2×(3n-1).

查看答案和解析>>

同步练习册答案