分析 (1)由已知数列首项及数列递推式可得a2,a3;
(2)由数列递推式可得3Sn-1=-1-an(n≥2),与原递推式作差可得数列{an}自第二项起构成以-2为公比的等比数列,则数列通项公式可求;
(3)把数列{an}的通项公式代入bn=an2+an,求得bn,代入$\frac{1}{b_2}$+$\frac{1}{b_3}$+$\frac{1}{b_4}$+…+$\frac{1}{b_n}$,放缩后利用等比数列的前n项和证得结论.
解答 (1)解:∵a1=-$\frac{5}{3}$,3Sn=-1-an+1,
∴3a1=-1-a2,解得a2=4,
3(a1+a2)=-1-a3,解得a3=-8;
(2)解:由3Sn=-1-an+1,
得3Sn-1=-1-an(n≥2),两式作差得:
3an=an-an+1,即an+1=-2an(n≥2).
∴数列{an}自第二项起构成以-2为公比的等比数列,
∴${a}_{n}=\left\{\begin{array}{l}{-\frac{5}{3},n=1}\\{(-2)^{n},n≥2}\end{array}\right.$;
(3)证明:∵bn=an2+an=(-2)2n+(-2)n=4n+(-2)n(n≥2).
∴$\frac{1}{b_2}+\frac{1}{b_3}+\frac{1}{b_4}+…+\frac{1}{b_n}=\frac{1}{{{4^2}+{2^2}}}+\frac{1}{{{4^3}-{2^3}}}+…+\frac{1}{{{4^n}+{{(-2)}^n}}}$
=$\frac{1}{{{2^2}({2^2}+1)}}+\frac{1}{{{2^3}({2^3}-1)}}+…<\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^8}+\frac{1}{2^9}+…=\frac{{\frac{1}{16}}}{{1-\frac{1}{16}}}+\frac{{\frac{1}{32}}}{{1-\frac{1}{16}}}=\frac{1}{10}$.
点评 本题考查数列递推式,考查了等比关系的确定,训练了放缩法证明数列不等式,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0} | B. | {1} | C. | {0,1} | D. | {0,1,2,3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com