分析 先由cos∠ADC=$\frac{3}{5}$确定角ADC的范围,因为∠BAD=∠ADC-B所以可求其正弦值,最后由正弦定理可得答案.
解答
解:由cos∠ADC=$\frac{3}{5}$>0,则∠ADC<$\frac{π}{2}$,
又由知B<∠ADC可得B<$\frac{π}{2}$,
由sinB=$\frac{5}{13}$,可得cosB=$\frac{12}{13}$,
又由cos∠ADC=$\frac{3}{5}$,可得sin∠ADC=$\frac{4}{5}$.
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=$\frac{4}{5}$×$\frac{12}{13}-\frac{3}{5}×\frac{5}{13}$=$\frac{33}{65}$.
由正弦定理得 $\frac{AD}{sinB}$=$\frac{BD}{sin∠BAD}$,
所以AD=$\frac{BD•sinB}{sin∠BAD}$=$\frac{33×\frac{5}{13}}{\frac{33}{65}}$=25.
故答案为:25.
点评 三角函数与解三角形的综合性问题,是近几年高考的热点,在高考试题中频繁出现.这类题型难度比较低,一般出现在17或18题,属于送分题,估计以后这类题型仍会保留,不会有太大改变.解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角或将边角互化,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y1=y2,s1>s2 | B. | y1=y2,s1<s2 | C. | y1>y2,s1=s2 | D. | y1<y2,s1=s2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$ | B. | $\sqrt{5}$ | C. | $\frac{{\sqrt{3}}}{2}$或 $\sqrt{5}$ | D. | $\frac{\sqrt{3}}{2}$或$\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com