精英家教网 > 高中数学 > 题目详情
11.设函数已知函数f(x)=x3+ax2+bx+c在x=-$\frac{1}{3}$和x=1处取得极值.
(1)求a,b的值及其单调区间;
(2)若对x∈[-1,2]不等式f(x)≤c2恒成立,求c的取值范围.

分析 (1)求出f′(x),因为函数在x=-$\frac{2}{3}$与x=1时都取得极值,所以得到f′(-$\frac{2}{3}$)=0且f′(1)=0联立解得a与b的值,然后把a、b的值代入求得f(x)及f′(x),然后讨论导函数的正负得到函数的增减区间;
(2)根据(1)函数的单调性,由于x∈[-1,2]恒成立求出函数的最大值值为f(2),代入求出最大值,然后令f(2)<c2列出不等式,求出c的范围即可

解答 解;(1)f(x)=x3+ax2+bx+c,f'(x)=3x2+2ax+b
由 $\left\{\begin{array}{l}{f′(-\frac{2}{3})=\frac{12}{9}-\frac{4}{3}a+b=0}\\{f′(1)=3+2a+b=0}\end{array}\right.$,解得,a=-$\frac{1}{2}$,b=-2,
f′(x)=3x2-x-2=(3x+2)(x-1),
函数f(x)的单调区间如下表:

x(-∞,-$\frac{2}{3}$)-$\frac{2}{3}$(-$\frac{2}{3}$,1)1(1,+∞)
f′(x)+0-0+
f(x)极大值极小值
所以函数f(x)的递增区间是(-∞,-$\frac{2}{3}$)和(1,+∞),递减区间是(-$\frac{2}{3}$,1).
(2)f(x)=x3-$\frac{1}{2}$x2-2x+c,x∈[-1,2],
当x=-$\frac{2}{3}$时,f(x)=$\frac{22}{27}$+c为极大值,而f(2)=2+c,所以f(2)=2+c为最大值.
要使f(x)<c2对x∈[-1,2]恒成立,须且只需c2>f(2)=2+c.
解得c<-1或c>2.

点评 考查学生利用导数研究函数极值的能力,利用导数研究函数单调性的能力,以及理解函数恒成立时所取到的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.sin80°cos20°-cos80°sin20°的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知动点P与平面上两定点A(-$\sqrt{2}$,0),B($\sqrt{2}$,0)连线的斜率的积为定值-$\frac{1}{2}$.则动点P的轨迹方程C(  )
A.$\frac{{x}^{2}}{5}$$+\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{2}$+y2=1C.$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.△ABC中,D为边BC上的一点,BD=33,sinB=$\frac{5}{13}$,cos∠ADC=$\frac{3}{5}$,则AD为25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用反证法证明命题“三角形的内角至少有一个大于或等于60°”时,假设正确的是(  )
A.假设至多有一个内角大于或等于60°
B.假设至多有两个内角大于或等于60°
C.假设没有一内角大于或等于60°
D.假设没有一个内角或至少有两个内角大于或等于60°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.$\frac{\sqrt{3}tan15°+1}{\sqrt{3}-tan15°}$的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数y=-$\frac{1}{3}$x3+ax有三个单调区间,则a的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={0,b},B={x∈Z|x2-3x<0},若A∩B≠∅,则b等于(  )
A.1B.2C.3D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知A,B,C是△ABC的三个内角.
(Ⅰ)已知$\overrightarrow m=(tanA+tanB,\sqrt{3})$,$\overrightarrow n=(1,1-tanAtanB)$,且$\overrightarrow m⊥\overrightarrow n$,求∠C的大小;
(Ⅱ)若向量$\overrightarrow{a}=(\sqrt{2}cos\frac{A+B}{2},sin\frac{A-B}{2})$,且|$\overrightarrow{α}$|=$\frac{\sqrt{6}}{2}$,求证:tanAtanB为定值,并求这个定值.

查看答案和解析>>

同步练习册答案