精英家教网 > 高中数学 > 题目详情
6.用反证法证明命题“三角形的内角至少有一个大于或等于60°”时,假设正确的是(  )
A.假设至多有一个内角大于或等于60°
B.假设至多有两个内角大于或等于60°
C.假设没有一内角大于或等于60°
D.假设没有一个内角或至少有两个内角大于或等于60°

分析 熟记反证法的步骤,从命题的反面出发假设出结论,直接填空即可.

解答 解:∵三角形中至少有一个内角大于等于60°,
∴第一步应假设结论不成立,
即假设没有一内角大于或等于60°.
故选:C.

点评 此题主要考查了反证法,反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.抛物线y=-$\frac{1}{8}{x^2}$的焦点坐标是(  )
A.(0,$\frac{1}{32}$)B.($\frac{1}{32}$,0)C.(0,-2)D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.圆x2+y2=8内有一点P(-1,2),AB为过点P的弦,
(1)若|AB|=2$\sqrt{7}$,求出直线AB的方程;
(2)设过P点的弦的中点为M,求点M的坐标所满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若tanα=$\frac{1}{2},tanβ=\frac{1}{3},α,β∈(0,\frac{π}{4})$,则α+β=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}满足:an+an+1=5(n∈N*),若a7=4,则a2014=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数已知函数f(x)=x3+ax2+bx+c在x=-$\frac{1}{3}$和x=1处取得极值.
(1)求a,b的值及其单调区间;
(2)若对x∈[-1,2]不等式f(x)≤c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)求三个数175,100,75的最大公约数.
(2)将1015(6)转化成十进制的数,再将十进制转化为八进制.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.
(1)若B中每一元素都有原象,则不同的映射f有多少个?
(2)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,则不同的映射f又有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,直四棱柱ABCD-A1B1C1D1中,AD1⊥A1C,且AA1=AD=DC=2,AB=BC.
(1)求证:CD⊥AD;
(2)当DM为何值时(M是BD上的点),D1M⊥面A1C1D.

查看答案和解析>>

同步练习册答案