【题目】设a≠b,解关于x的不等式a2x+b2(1-x)≥[ax+b(1-x)]2.
【答案】{x|0≤x≤1}.
【解析】
将原不等式化简为(a-b)2(x2-x) ≤0,由条件得到系数(a-b)2>0,直接解出不等式x2-x≤0即可.
解:将原不等式化为
(a2-b2)x+b2≥(a-b)2x2+2(a-b)bx+b2,
移项,整理后得 (a-b)2(x2-x) ≤0,…
∵ a≠b 即 (a-b)2>0,
∴ x2-x≤0,
即 x(x-1) ≤0.
解此不等式,得解集 {x|0≤x≤1}.
【点睛】
本小题主要考查不等式基本知识,不等式的解法;解题时要注意公式的灵活运用.对于含参的二次不等式问题,先判断二次项系数是否含参,接着讨论参数等于0,不等于0,再看式子能否因式分解,若能够因式分解则进行分解,再比较两根大小,结合图像得到不等式的解集.
【题型】解答题
【结束】
19
【题目】设Sn是等差数列{an}的前n项和,已知
与
的等比中项为
,且
与
的等差中项为1,求数列{an}的通项公式。
科目:高中数学 来源: 题型:
【题目】在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一个巨大的汽油灌,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击相互独立,且命中概率都是
,求(1)油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为
,求
的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了得到函数y=sin(2x﹣
)的图象,只需把函数y=sin(2x+
)的图象( )
A.向左平移
个长度单位
B.向右平移
个长度单位
C.向左平移
个长度单位
D.向右平移
个长度单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题10分)选修4—4:坐标系与参数方程
已知曲线C1的参数方程为
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ。
(Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在直角坐标系xOy中,曲线C的参数方程为
(θ为参数),直线l经过定点P(3,5),倾斜角为
.
(1)写出直线l的参数方程和曲线C的标准方程.
(2)设直线l与曲线C相交于A,B两点,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx+
mx2﹣(m+1)x+1.
(1)若g(x)=f'(x),讨论g(x)的单调性;
(2)若f(x)在x=1处取得极小值,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在P地正西方向8km的A处和正东方向1km的B处各有一条正北方向的公路AC和BD,现计划在AC和BD路边各修建一个物流中心E和F,为缓解交通压力,决定修建两条互相垂直的公路PE和PF,设∠EPA=α(0<α<
). ![]()
(1)为减少对周边区域的影响,试确定E,F的位置,使△PAE与△PFB的面积之和最小;
(2)为节省建设成本,试确定E,F的位置,使PE+PF的值最小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com