精英家教网 > 高中数学 > 题目详情
已知以为焦点的抛物线上的两点满足,则弦的中点到准线的距离为(   )
A.B.C.D.
B
两点坐标分别为。可知抛物线的焦点,准线方程为。由可得,则。因为都在抛物线上,所以,则,即,所以,故,所以弦的中点到准线的距离,故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对
称图形),其中矩形的三边由长6分米的材料弯折而成,边的长
分米();曲线拟从以下两种曲线中选择一种:曲线一段余弦曲线
(在如图所示的平面直角坐标系中,其解析式为),此时记门的最高点
边的距离为;曲线是一段抛物线,其焦点到准线的距离为,此时记门的最高点
边的距离为.
(1)试分别求出函数的表达式;
(2)要使得点边的距离最大,应选用哪一种曲线?此时,最大值是多少?
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设点F(0,),动圆P经过点F且和直线y=相切,记动圆的圆心P的轨迹为曲线W.
⑴求曲线W的方程;⑵过点F作相互垂直的直线,分别交曲线W于A,B和C,D.①求四边形ABCD面积的最小值;②分别在A,B两点作曲线W的切线,这两条切线的交点记为Q,求证:QA⊥QB,且点Q在某一定直线上。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,过坐标原点且斜率为的直线
椭圆相交于
(Ⅰ)求椭圆的方程;
(Ⅱ)若动圆与椭圆和直线都没有公共点,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线轴相交于定点
(Ⅲ)在(Ⅱ)的条件下,过点的直线与椭圆交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知动点在曲线上移动,则点与点连线中点的轨迹方程是__________▲__________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

线段是椭圆的一动弦,且直线与直线交于点,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是(     )
A.[0,)B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线和点,过点P的直线与抛物线交与两点,设点P刚好为弦的中点。
(1)求直线的方程
(2)若过线段上任一(不含端点)作倾斜角为的直线交抛物线于,类比圆中的相交弦定理,给出你的猜想,若成立,给出证明;若不成立,请说明理由。
(3)过P作斜率分别为的直线交抛物线于交抛物线于,是否存在使得(2)中的猜想成立,若存在,给出满足的条件。若不存在,请说明理由。

查看答案和解析>>

同步练习册答案