精英家教网 > 高中数学 > 题目详情
7.已知每项均大于零的数列{an}中,首项a1=1且前n项和Sn满足Sn$\sqrt{{S}_{n-1}}$-Sn-1$\sqrt{{S}_{n}}$=2$\sqrt{{S}_{n}{S}_{n-1}}$(n∈N*且n≥2),求数列{$\sqrt{{S}_{n}}$}的通项公式.

分析 把已知数列递推式变形,可得数列{$\sqrt{{S}_{n}}$}是以$\sqrt{{S}_{1}}=\sqrt{{a}_{1}}=1$为首项,以2为公差的等差数列,由等差数列的通项公式得答案.

解答 解:由Sn$\sqrt{{S}_{n-1}}$-Sn-1$\sqrt{{S}_{n}}$=2$\sqrt{{S}_{n}{S}_{n-1}}$,
得$\frac{{S}_{n}\sqrt{{S}_{n-1}}}{\sqrt{{S}_{n}{S}_{n-1}}}-\frac{{S}_{n-1}\sqrt{{S}_{n}}}{\sqrt{{S}_{n}{S}_{n-1}}}=2$,
即$\sqrt{{S}_{n}}-\sqrt{{S}_{n-1}}=2$(n≥2),
∴数列{$\sqrt{{S}_{n}}$}是以$\sqrt{{S}_{1}}=\sqrt{{a}_{1}}=1$为首项,以2为公差的等差数列,
则$\sqrt{{S}_{n}}=1+2(n-1)=2n-1$.

点评 本题考查数列递推式,考查了等差关系的确定,训练了等差数列通项公式的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在△ABC中,已知cosA=-$\frac{4}{5}$.
(1)求sinA的值;
(2)求$\frac{sin2A+2si{n}^{2}A}{1+tanA}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.f(x)=asinx+bcosx,当f($\frac{π}{3}$)=1且f(x)的最小值为k时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在以AB为直径的半圆周上,有异于A、B的6个点C1、C2、C3、C4、C5、C6,线段AB上有异于A、B的四个点D1、D2、D3、D4.问:
(1)以这10个点(不包括A,B)中的3个点为顶点可作几个三角形?其中含点C1的三角形有几个?
(2)以图中的12个点中的4个点为顶点可作多少个四边形?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.交5元钱,可以参加一次摸奖,一袋中有同样大小的球10个,其中有8个标有2元钱,2个标有5元钱,摸奖者从中任取2个球,按2个球标有的钱数之和给与奖励.设抽奖人所得奖励为X,获利为Y,请给出X与Y的关系式以及随机变量Y的分布列和E(Y).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点P(x,y)在圆(x-2)2+y2=1上运动,分别求下列各式的最大值和最小值.
(1)z=2x+y;
(2)z=$\frac{y}{x}$;
(3)z=x2+2x+y2-2y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)判断下列各角是第几象限的角,并写出与各角终边都相同的角的集合:
①75°;
②195°
(2)判断下列各三角函数值的正负号:
①sin168°;
②cos(-600°);
③tan(-105°)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x,y,z为实数,且x+y+z=5,xy+yz+zx=3,则z的取值范围为$[-1,\frac{13}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=xlna-x2-ax(a>0,a≠1).
(1)当a=e时,求函数f(x)的图象在点(0,f(0))的切线方程;
(2)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e为自然对数的底数),求实数a的取值范围.

查看答案和解析>>

同步练习册答案