精英家教网 > 高中数学 > 题目详情
1.点A(1,-2)关于原点对称的对称点到(3,m)的距离是2$\sqrt{5}$,则m的值是-2或6.

分析 由点A(1,-2)关于原点对称的对称点(-1,2)到(3,m)的距离是2$\sqrt{5}$,利用两点间距离公式能求出m的值.

解答 解:点A(1,-2)关于原点对称的对称点是(-1,2),
∵对称点(-1,2)到(3,m)的距离是2$\sqrt{5}$,
∴$\sqrt{(3+1)^{2}+(m-2)^{2}}$=2$\sqrt{5}$,
解得m=-2或m=6.
故答案为:-2或6.

点评 本题考查实数值的求法,考查点的对称点、距离公式等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是基础知识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.将函数y=2cos(4x+$\frac{π}{6}$)向左平移$\frac{π}{12}$个单位后,得到的图象的一个中心对称中心为(  )
A.(-$\frac{π}{4}$,0)B.(-$\frac{π}{6}$,0)C.($\frac{π}{3}$,0)D.($\frac{5π}{12}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若(x+1)5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,则a0=32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知四棱锥A-CBB1C1的底面为矩形,D为AC1的中点,AC⊥平面BCC1B1
(Ⅰ)证明:AB∥平面CDB1
(Ⅱ)若AC=BC=1,BB1=$\sqrt{3}$,
(1)求BD的长;
(2)求三棱锥C-DB1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.集合A={x∈Z|(x+1)(x-2)≤0},B={x|x>0},则集合A∩B的元素个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β∈R,且ab≠0,α≠kπ(k∈Z),若f(2015)=5,则f(2016)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\left\{\begin{array}{l}{|lgx|,(x>0)}\\{-{x}^{2}-2x,(x≤0)}\end{array}\right.$,若f(a)=f(b)=f(c)=f(d)(其中a<b<c<d),则a+b+c+d的取值范围是(0,$\frac{81}{10}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若由一个2×2列联表中的数据计算得K2的观测值k≈6.630,则判断“这两个分类变量有关系”时,犯错误的最大概率是0.025.
参考数据:
P(K2≥k00.500.400.250.150.100.050.0250.0100.005
k00.4550.7081.3232.0722.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.tan$\frac{7π}{6}$的值为(  )
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

同步练习册答案