精英家教网 > 高中数学 > 题目详情
19.如图,已知四棱锥A-CBB1C1的底面为矩形,D为AC1的中点,AC⊥平面BCC1B1
(Ⅰ)证明:AB∥平面CDB1
(Ⅱ)若AC=BC=1,BB1=$\sqrt{3}$,
(1)求BD的长;
(2)求三棱锥C-DB1C1的体积.

分析 (Ⅰ)连结BC1,B1C连结DE,可得DE∥AB,即可得AB∥平面CDB1
(Ⅱ)(1)可得BC⊥CD,在RtBCD中,由BC=1,CD=$\frac{1}{2}A{C}_{1}$=$\frac{1}{2}\sqrt{A{C}^{2}+C{{C}_{1}}^{2}}$=1,可得BD
(2)V${\;}_{C-D{B}_{1}{C}_{1}}$=V${\;}_{{B}_{1}-CD{C}_{1}}$=$\frac{1}{2}{S}_{△CD{C}_{1}}•{B}_{1}{C}_{1}$=$\frac{1}{3}×\frac{1}{4}×1×\sqrt{3}×1=\frac{\sqrt{3}}{12}$

解答 解:(Ⅰ)证明:连结BC1,B1C连结DE,--------------------------(1分)
∵D、E分别为AC1,BC1,∴DE∥AB,-------------------------------(2分)
又∵DE?CDB1 AB?CDB1,∴AB∥平面CDB1;---------------------------------(4分)
(Ⅱ)(1)∵AC⊥平面BCC1B1,BC?BCC1B1
∴BC⊥AC
∵BC⊥CC1,AC∩CC1=C
BC⊥平面ACC1,CD?平面ACC1
∴BC⊥CD------------------------------------------------------------------------------(6分)
在R△BCD中,∵BC=1,CD=$\frac{1}{2}A{C}_{1}$=$\frac{1}{2}\sqrt{A{C}^{2}+C{{C}_{1}}^{2}}$=1
∴$BD=\sqrt{2}$--------------------------------------------------(8分)
(2)∵BC⊥平面ACC1,BC∥B1C1
∴B1C1⊥平面ACC1,-----------------------------------------------------------------------------------------(10分)
∴V${\;}_{C-D{B}_{1}{C}_{1}}$=V${\;}_{{B}_{1}-CD{C}_{1}}$=$\frac{1}{2}{S}_{△CD{C}_{1}}•{B}_{1}{C}_{1}$=$\frac{1}{3}×\frac{1}{4}×1×\sqrt{3}×1=\frac{\sqrt{3}}{12}$-----------------------------(12分)

点评 本题考查了空间位置关系的判定,几何体体积的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.某工商局对本局所管辖的某类商品中35件货物进行抽样检查,检查结果有15件假货.若现从这35件货物中任意取3件.
(1)恰有2件假货在内的不同取法有多少种?
(2)至少有2件假货在内的不同取法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.数列{an}中,a1=$\frac{1}{3}$,an+1=$\frac{2{a}_{n}-1}{{a}_{n}}$(n∈N*),数列{bn}满足bn=$\frac{1}{{a}_{n}-1}$.
(1)求数列{bn}中前四项;
(2)求证:数列{bn}是等差数列;
(3)若cn=(an+2)($\frac{10}{9}$)n,试判断数列{cn}是否有最小值,若有最小项,求出最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.f(α)=$\frac{cos(\frac{π}{2}-α)cos(8π-α)tan(-α+5π)}{tan(3π+α)sin(\frac{5π}{2}+α)}$
(1)化简f(α);
(2)若$α∈(0,\frac{π}{3})$且sin($α+\frac{π}{6}$)=$\frac{4}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A={x|ax2-4x+1=0}有且只有一个元素,则实数a的值为0或4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2|x+1|-|x-2|,x∈[-3,3].
(Ⅰ)写出函数f(x)的分段解析表达式,并作出f(x)的图象;
(Ⅱ)求不等式|f(x)|>2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.点A(1,-2)关于原点对称的对称点到(3,m)的距离是2$\sqrt{5}$,则m的值是-2或6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,图象与函数y=4x的图象关于y轴对称的是(  )
A.y=-4xB.y=4-xC.y=-4-xD.y=4x+4-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,网格上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为3.

查看答案和解析>>

同步练习册答案