精英家教网 > 高中数学 > 题目详情
10.如图,在三棱锥P-AMC中,AC=AM=PM=2,PM⊥面AMC,AM⊥AC,B,D分别为CM,AC的中点.
(Ⅰ)在PC上确定一点E,使得直线PM∥平面ABE,并说明理由;
(Ⅱ)在(Ⅰ)的条件下,连接AE,与PD相交于点N,求三棱锥B-ADN的体积.

分析 (I)由线面平行的性质可知PM∥EB,故E为PC中点;
(II)由AE,PD为△PAC的中线可知N为△PAC的重心,故而ND=$\frac{1}{3}PD$,于是N到底面ACM的距离为$\frac{1}{3}$PM.代入体积公式得出体积.

解答 解:(Ⅰ)E为PC的中点.理由如下:
连接BE,∵B,E分别为CM,PC的中点,
∴BE∥PM,又BE?平面ABE,PM?平面ABE,
∴PM∥面ABE.
(Ⅱ)由于AE,PD分别是△PAC的边PC,AC上的中线,
∴AE和PD的交点N为△PAC的重心,∴DN=$\frac{1}{3}$PD.
∴N到平面AMC的距离h=$\frac{1}{3}PM$=$\frac{2}{3}$.
∵B,D是MC,AC的中点,
∴S△ABD=$\frac{1}{4}$S△ACM=$\frac{1}{4}×\frac{1}{2}×2×2=\frac{1}{2}$.
∴VB-ADN=VN-ABD=$\frac{1}{3}{S}_{△ABD}•h$=$\frac{1}{3}×\frac{1}{2}×\frac{2}{3}=\frac{1}{9}$.

点评 本题考查了线面平行的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.观察下列各式(如图):

照此规律,当n∈N*时,$1+\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{{{{(n+1)}^2}}}<$$\frac{2n+1}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1
(3)求三棱锥D-AA1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.双曲线C的渐近线方程为y=±$\sqrt{2}$x,则C的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{6}$C.$\frac{\sqrt{6}}{2}$或$\sqrt{6}$D.$\sqrt{3}$或$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直三棱柱ABC-A1B1C1(侧棱垂直于底面的棱柱为直棱柱)中,BC=CC1=1,AC=2,∠ABC=90°.
(1)求证:平面ABC1⊥平面A1B1C;
(2)求三棱锥A1-ABC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,∠DAB是直角,AB∥CD,AD=CD=2AB=2,E、F分别为PC、CD的中点.
(Ⅰ)试证:AB⊥平面BEF;
(Ⅱ)若VC-BEF=1,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.正整数2520的正约数(包括1和本身)共有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)设中心在原点的椭圆与双曲线2x2-2y2=1有公共的焦点,且它们的离心率互为倒数,求该椭圆的标准方程.
(2)求以椭圆3x2+13y2=39的焦点为焦点,以直线y=±$\frac{x}{2}$为渐近线的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=90°,AB=AD=AP=2,BC=1.求:
(1)异面直线PC与AD所成角的大小;
(2)四棱锥P-ABCD的体积与侧面积.

查看答案和解析>>

同步练习册答案