分析 (1)由BB1⊥平面ABC得BB1⊥AC,由勾股定理的逆定理得AC⊥BC,故AC⊥平面BCC1B1,于是AC⊥BC1;'
(2)设CB1与C1B的交点为E,连接DE,由中位线定理可得DE∥AC1,于是AC1∥平面CDB1;
(3)由D为AB中点可知V${\;}_{D-A{A}_{1}{C}_{1}}$=$\frac{1}{2}$V${\;}_{B-A{A}_{1}{C}_{1}}$=$\frac{1}{2}$V${\;}_{B-AC{C}_{1}}$=$\frac{1}{2}$V${\;}_{{C}_{1}-ABC}$.
解答
解:(1)证明:∵AC=3,AB=5,BC=4,∴AC⊥BC
∵BB1⊥平面ABC,AC?平面ABC,
∴AC⊥CC1,又BC∩CC1=C,BC?平面BCC1B1,CC1?平面BCC1B1,
∴AC⊥平面BCC1B1.∵BC1?平面BCC1B1,
∴AC⊥BC1.
(2)证明:设CB1与C1B的交点为E,连接DE,
∵四边形BCC1B1是平行四边形,∴E是BC1的中点,
∵D是AB的中点,
∴DE∥AC1,又∵DE?平面CDB1,AC1?平面CDB1,
∴AC1∥平面CDB1.
(3)解:V${\;}_{B-A{A}_{1}{C}_{1}}$=V${\;}_{B-AC{C}_{1}}$=V${\;}_{{C}_{1}-ABC}$=$\frac{1}{3}{S}_{△ABC}•C{C}_{1}$=$\frac{1}{3}×\frac{1}{2}×3×4×4=8$.
∵D是AB的中点,
∴V${\;}_{D-A{A}_{1}{C}_{1}}$=$\frac{1}{2}$V${\;}_{B-A{A}_{1}{C}_{1}}$=4.
点评 本题考查了线面垂直的判定与性质,线面平行的判定,棱锥的体积计算,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | y=±$\sqrt{2}$x | B. | y=±2x | C. | y=±$\sqrt{3}$x | D. | y=±2$\sqrt{2}$x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com