分析 (Ⅰ)欲证AB⊥平面BEF,根据直线与平面垂直的判定定理可知只需证AB与平面BEF内两相交直线垂直,而AB⊥BF.根据面面垂直的性质可知AB⊥EF,满足定理所需条件;
(Ⅱ)利用体积公式,结合VC-BEF=1,求PA的长.
解答 (Ⅰ)证明:由已知DF∥AB且∠DAB为直角,
故ABFD是矩形,从而AB⊥BF.
又PA⊥底面ABCD,
所以平面PAD⊥平面ABCD,
因为AB⊥AD,故AB⊥平面PAD,
所以AB⊥PD,
在△PDC内,E、F分别是PC、CD的中点,EF∥PD,所以AB⊥EF.
由此得AB⊥平面BEF.
(Ⅱ)因为VC-BEF=1,
所以$\frac{1}{3}×\frac{1}{2}×1×2×\frac{1}{2}PA$=1,
所以PA=6.
点评 本小题主要考查直线与平面的位置关系、三棱锥体积的计算等有关知识,考查空间想象能力和思维能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{64}$=1 | D. | $\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{36}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2 | C. | $\frac{1}{2}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com