精英家教网 > 高中数学 > 题目详情
17.在△ABC中,若sinA=2sinBcosC,试判断该三角形形状.

分析 由三角形的知识和和差角的三角函数公式可得sin(B-C)=0,可得B=C,可得三角形为等腰三角形.

解答 解:∵在△ABC中sinA=2sinBcosC,
∴sin[π-(B+C)]=2sinBcosC,
∴sin(B+C)=2sinBcosC,
∴sinBcosC+cosBsinC=2sinBcosC,
∴sinBcosC-cosBsinC=0
∴sin(B-C)=0,
∴B=C,即三角形为等腰三角形.

点评 本题考查三角形形状的判定,涉及和差角的三角函数公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.A={0,1,2,3},B={2,3,4,5,6},f是A到B的映射,且当i,j∈A,i≠j时,f(i)≠f(j),满足这样条件的映射f的个数是120.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=-2sin(2x+φ)(|φ|<π),若f(x)≥f($\frac{π}{8}$)恒成立,则f(x)的一个单调递减区间是(  )
A.[-$\frac{3}{8}$π,$\frac{π}{8}$]B.[-$\frac{π}{8}$,$\frac{3}{8}$π]C.[$\frac{π}{8}$,$\frac{5}{8}π$]D.[$\frac{π}{8}$,$\frac{9}{8}π$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设集合A={(x,y)|y=$\sqrt{4-{x}^{2}}$},B={(x,y)|y=k(x-b)+1},若对任意0≤k≤1都有A∩B≠∅,则实数b的取值范围是1-2$\sqrt{2}$≤b≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)=$\sqrt{2}$sin(x-$\frac{π}{4}$)+sin2x,则f(x)的值域为[-1-$\sqrt{2}$,$\frac{5}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在1到10这10个自然数中,选取4个,要求这4个数两两不相邻,则共有选法35.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数y=-2cos2x-2sinx+3的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\sqrt{x}$+1,g(x)=alnx,若在x=$\frac{1}{4}$处函数f(x)与g(x)的图象的切线平行,则实数a的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.记定义在R上的函数f(x)的导函数为f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,则称x0为函数f(x)在区间[a,b]上的“中值点”.那么函数f(x)=x+lnx在区间[e,e2]上的“中值点”为e2-2.

查看答案和解析>>

同步练习册答案