精英家教网 > 高中数学 > 题目详情
已知函数f(x)=alnx-x2+1.
(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;
(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.
(1) a=6,b=-4.    (2)
第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1
即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。
(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,
∵g′(x)=-2x+1=(x>0),
∴-2x2+x+a≤0在x>0时恒成立,
∴1+8a≤0,a≤-,又a<0,
∴a的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数满足且对于任意, 恒有成立
(1)求实数的值;  (2)解不等式
(3)当时,函数是单调函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为正实数,为自然数,抛物线轴正半轴相交于点,设为该抛物线在点处的切线在轴上的截距。
(1)用表示
(2)求对所有都有成立的的最小值;
(3)当时,比较的大小,并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,①求函数的单调区间;②求函数的极值,③当时,求函数的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,当时,函数取得极大值.
(1)求实数的值;
(2)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有
(3)已知正数,满足,求证:当时,对任意大于,且互不相等的实数,都有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是函数的导函数,若函数在区间上单调递减,则实数的取值范围是(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)若函数依次在处取到极值.求的取值范围;
(Ⅱ)若存在实数,使对任意的,不等式 恒成立.求正整数的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

上是减函数,则的取值范围是_____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案