【题目】如图所示,菱形ABCD与正三角形BCE的边长均为2,它们所在的平面互相垂直,DF⊥平面ABCD且DF.
(1)求证:EF//平面ABCD;
(2)若∠ABC=∠BCE,求二面角A﹣BF﹣E的余弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)要线面平行,即证直线在面外且直线平行于平面内的一条直线,故过点E作EH⊥BC于构造平行四边形即可得到线线平行.
(2)连接HA,根据题意,AH⊥BC,以H为原点,HB,HA,HE为x,y,z轴建立空间直角坐标系,分别求出平面BAF和平面BEF的法向量,利用法向量求出二面角的余弦值.
(1)过点E作EH⊥BC,连接HD,EH,
因为平面ABCD⊥平面BCE,EH平面BCE,
平面ABCD∩平面BCE=BC,
所以EH⊥平面ABCD,
因为FD⊥ABCD,FD,
所以FD//EH,FD=EH,故平行四边形EHDF,
所以EF//HD,
由EF平面ABCD,HD平面ABCD,
所以EF//平面ABCD;
(2)连接HA,根据题意,AH⊥BC,
如图:
以H为原点,HB,HA,HE为x,y,z轴建立空间直角坐标系,
则A(0,,0),B(1,0,0),E(0,,),F(-2,,),
则(﹣1,,0),(﹣1,0,),(﹣3,,),
设平面BAF的法向量为(x,y,z),
,得(,1,2),
设平面BEF的法向量为,
由,得,
由cos,
所以二面角A﹣FB﹣E的余弦值为.
科目:高中数学 来源: 题型:
【题目】三棱柱ABC﹣A1B1C1中,平面AA1B1B⊥平面ABC,AB=AA1=A1B=4,BC=2,AC=2,点F为AB的中点,点E为线段A1C1上的动点.
(1)求证:BC⊥平面A1EF;
(2)若∠B1EC1=60°,求四面体A1B1EF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:,动直线l与椭圆E交于不同的两点,,且△AOB的面积为1,其中O为坐标原点.
(1)证明:为定值;
(2)设线段AB的中点为M,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C:1(a0,b0)的左右焦点分别为F1,F2,点O为坐标原点,点P在双曲线的右支上,且满足|F1F2|=2|OP|.若直线PF2与双曲线C只有一个交点,则双曲线C的离心率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新型冠状病毒属于属的冠状病毒,有包膜,颗粒常为多形性,其中包含着结构为数学模型的,,人体肺部结构中包含,的结构,新型冠状病毒肺炎是由它们复合而成的,表现为.则下列结论正确的是( )
A.若,则为周期函数
B.对于,的最小值为
C.若在区间上是增函数,则
D.若,,满足,则
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ex﹣ax+a(a∈R),其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.
(1)求a的取值范围;
(2)证明:f′()<0(f′(x)为函数f(x)的导函数);
(3)设点C在函数y=f(x)的图象上,且△ABC为等腰直角三角形,记t,求(a﹣1)(t﹣1)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,左、右焦点分别是,椭圆上短轴的一个端点与两个焦点构成的三角形的面积为;
(1)求椭圆的方程;
(2)过作垂直于轴的直线交椭圆于两点(点在第二象限),是椭圆上位于直线两侧的动点,若,求证:直线的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:过点A,两个焦点为(-1,0),(1,0)。
(Ⅰ)求椭圆C的方程;
(Ⅱ)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com