精英家教网 > 高中数学 > 题目详情
19.在△ABC中,A=60°,b=1,S△ABC=$\sqrt{3}$,求△ABC的外接圆半径r.

分析 由已知利用三角形面积公式可求c,进而利用余弦定理可求a,根据正弦定理即可解得外接圆半径r的值.

解答 解:∵A=60°,b=1,S△ABC=$\frac{1}{2}×1×c×$sin60°=$\sqrt{3}$,
∴解得c=4,
∴a=$\sqrt{{b}^{2}+{c}^{2}-2bccosA}$=$\sqrt{{1}^{2}+{4}^{2}-2×1×4×\frac{1}{2}}$=$\sqrt{13}$,
∴2r=$\frac{a}{sinA}=\frac{\sqrt{13}}{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{39}}{3}$,
∴△ABC的外接圆半径r=$\frac{\sqrt{39}}{3}$.

点评 本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设a=log37,b=21.2,c=0.83.1,则(  )
A.b<a<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线l:4x+y-4=0,下列曲线:x2=-y,$\frac{y^2}{16}$-x2=1,$\frac{x^2}{3}$+$\frac{y^2}{2}$=1,其中与直线l只有一个公共点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=2x+a2x-2a的零点在区间(0,1)上,则a的取值范围是(  )
A.(-∞,$\frac{1}{2}$)B.(-∞,1)C.($\frac{1}{2}$,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数既是偶函数,又在区间(1,2)上是增函数的是(  )
A.y=-$\frac{2}{x}$B.y=x+1C.y=$\sqrt{{x}^{2}-4}$D.y=2x2-|x|+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|-2≤x<5},B={x|2<x≤7},则A∩B=(  )
A.{x|-2<x<5}B.{x|2<x<5}C.{x|2≤x≤7}D.{x|-2≤x≤7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线的离心率为$\frac{\sqrt{7}}{2}$,且其顶点到其渐近线的距离为$\frac{2\sqrt{21}}{7}$,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1
C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1或$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1或$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在直三棱柱ABC-A1B1C1中,AB⊥AC,点M、N、E分别为A1B、B1C1、A1B1上的中点.
(Ⅰ)求证:平面MNE∥平面ACC1A1
(Ⅱ)若AB=AC=AA1=2,求证:平面BMC⊥平面AMC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)计算:${({2\frac{1}{4}})^{\frac{1}{2}}}-{({-9.6})^0}-{({3\frac{3}{8}})^{-\frac{2}{3}}}+{({1.5})^{-2}}+lg25+lg4+{7^{{{log}_7}2}}$
(2)已知sinα-2cosα=0,求$\frac{{{{sin}^2}α+2{{cos}^2}α}}{sinα•cosα}$的值.

查看答案和解析>>

同步练习册答案