精英家教网 > 高中数学 > 题目详情
14.M,N分别为双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1左、右支上的点,设$\overrightarrow{v}$是平行于x轴的单位向量,则|$\overrightarrow{MN}$•$\overrightarrow{v}$|的最小值为4.

分析 根据向量数量积的定义结合双曲线的性质进行求解即可.

解答 解:由向量数量积的定义知$\overrightarrow{MN}$•$\overrightarrow{v}$即向量$\overrightarrow{MN}$在向量$\overrightarrow{v}$上的投影|$\overrightarrow{v}$|模长的乘积,故求|$\overrightarrow{MN}$•$\overrightarrow{v}$|的最小值,
即求$\overrightarrow{MN}$在x轴上的投影的绝对值的最小值,
由双曲线的图象可知|$\overrightarrow{MN}$•$\overrightarrow{v}$|的最小值为4
故答案为:4

点评 本题主要考查双曲线性质的应用,根据向量数量积的定义转化为投影关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知双曲线mx2-ny2=1(m>0、n>0)的离心率为2,则椭圆mx2+ny2=1的离心率为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直三棱柱ABC-A1B1C1(侧棱垂直于底面的棱柱为直棱柱)中,BC=CC1=1,AC=2,∠ABC=90°.
(1)求证:平面ABC1⊥平面A1B1C;
(2)求三棱锥A1-ABC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.正整数2520的正约数(包括1和本身)共有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.棱长为1的正方体ABCD-A1B1C1D1中,沿平面A1ACC1将正方体分成两部分,其中一部分如图所示,过直线A1C的平面A1CM与线段BB1交于点M.
(Ⅰ)当M与B1重合时,求证:MC⊥AC1
(Ⅱ)当平面A1CM⊥平面A1ACC1时,求平面A1CM分几何体所得两部分体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)设中心在原点的椭圆与双曲线2x2-2y2=1有公共的焦点,且它们的离心率互为倒数,求该椭圆的标准方程.
(2)求以椭圆3x2+13y2=39的焦点为焦点,以直线y=±$\frac{x}{2}$为渐近线的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在棱长为1的正方体ABCD-A1B1C1D1中,F为B1C1的中点,求二面角A1-AD1-F的大小

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知抛物线y2=4x,过其焦点F作直线l交抛物线于A、B两点,M为抛物线的准线与x轴的交点,tan∠AMB=$\frac{4}{3}$,则|AB|=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.省农科所经过5年对甲、乙两棉种的实验研究,将连续5年棉花产量(千克/亩)的统计数据用茎叶图表示如图,则平均产量较高与产量较稳定的分别是(  )
A.棉农甲;棉农甲B.棉农乙;棉农甲C.棉农甲;棉农乙D.棉农乙;棉农乙

查看答案和解析>>

同步练习册答案