精英家教网 > 高中数学 > 题目详情
15.(Ⅰ)设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M. 证明:|$\frac{1}{3}$a+$\frac{1}{6}$b|<$\frac{1}{4}$;
(Ⅱ)若函数f(x)=|2x+1|+|2x-3|,关于x的不等式f(x)-log2(a2-3a)>2恒成立,求实数a的取值范围.

分析 (Ⅰ)令h(x)=|x-1|-|x+2|,通过讨论x的范围求出M,从而证明不等式即可;
(Ⅱ)问题转化为|2x+1|+|2x-3|>${log}_{2}^{{(a}^{2}-3a)}$+2,求出|2x+1|+|2x-3|的最小值,解出a的范围即可.

解答 解:(Ⅰ)记h(x)=|x-1|-|x+2|=$\left\{\begin{array}{l}{3,x≤-2}\\{-2x-1,-2<x<1}\\{-3,x≥1}\end{array}\right.$,
由-2<-2x-1<0,解得:-$\frac{1}{2}$<x<$\frac{1}{2}$,
则M={x|-$\frac{1}{2}$<x<$\frac{1}{2}$},
所以|$\frac{1}{3}$a+$\frac{1}{6}$b|≤$\frac{1}{3}$|a|+$\frac{1}{6}$|b|<$\frac{1}{3}$×$\frac{1}{2}$+$\frac{1}{6}$×$\frac{1}{2}$=$\frac{1}{4}$;
(Ⅱ)不等式f(x)-${log}_{2}^{{(a}^{2}-3a)}$>2
等价于|2x+1|+|2x-3|>${log}_{2}^{{(a}^{2}-3a)}$+2,
|2x+1|+|2x-3|≥|2x+1-2x+3|=4,
于是4>${log}_{2}^{{(a}^{2}-3a)}$+2,即$\left\{\begin{array}{l}{{a}^{2}-3a>0}\\{{a}^{2}-3a<4}\end{array}\right.$,
∴-1<a<0或3<a<4.

点评 本题考查了解绝对值不等式问题,考查对数函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知f(x)=xlnx在点(x0,f(x0))处的切线与直线2x+y+1=0垂直,则x0=(  )
A.$\frac{1}{{e}^{2}}$B.$\frac{1}{e}$C.$\frac{\sqrt{e}}{e}$D.$\sqrt{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设向量$\vec a$与$\vec b$满足:$\vec b$在$\vec a$方向上的投影为1,$\vec a$与$\vec a-2\vec b$垂直,则$|{\vec a}|$=(  )
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|x-a|+2x,其中a>0.
(1)当a=2时,求不等式f(x)≥2x+1的解集;
(2)若当x∈(-1,+∞)时,恒有f(x)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.执行如图所示的程序框图,则输出的数S=2500

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,分别测出它们的高度如下(单位:cm)
甲:19   20  21  23  25  29  32  33  37   41
乙:10   24  26  30  34   37  44  46  47  48
(Ⅰ)用茎叶图表示上述两组数据,并对两块地抽取树苗的高度进行比较,写出两个统计结论;
(Ⅱ)苗圃基地分配这20株树苗的栽种任务,小王在苗高大于40cm的5株树苗中随机的选种3株,记X是小王选种的3株树苗中苗高大于45cm的株数,求X的分布列与数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知直线l:x+y=2与圆C:x2+y2-2y=3交于A,B两点,则|AB|=(  )
A.$\sqrt{14}$B.2$\sqrt{7}$C.$\sqrt{7}$D.$\frac{\sqrt{14}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若曲线f(x)=xcosx在x=π处的切线与直线ax+2y-3=0互相垂直,则实数a的值等于(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设定义在R上的函数f(x)=$\left\{\begin{array}{l}{2,x=0}\\{{log}_{3}|x|,x≠0}\end{array}\right.$ 若关于x的方程f2(x)+bf(x)+c=0恰好有3个不同的实数解,则bc=-16.

查看答案和解析>>

同步练习册答案