精英家教网 > 高中数学 > 题目详情
5.已知f(x)=xlnx在点(x0,f(x0))处的切线与直线2x+y+1=0垂直,则x0=(  )
A.$\frac{1}{{e}^{2}}$B.$\frac{1}{e}$C.$\frac{\sqrt{e}}{e}$D.$\sqrt{e}$

分析 求函数的导数,利用直线的垂直关系建立方程关系,进行求解即可得到结论.

解答 解:函数的导数f′(x)=1+lnx,f′(x0)=lnx0+1,
若函数f(x)在点(x0,f(x0))处的切线与直线2x+y+1=0垂直,
则f′(x0)=lnx0+1=$\frac{1}{2}$,lnx0=-$\frac{1}{2}$
即x0=${e}^{-\frac{1}{2}}$=$\frac{\sqrt{e}}{e}$,
故选:C

点评 本题主要考查导数的几何意义以及直线垂直的斜率关系,根据导数的几何意义以及直线垂直的斜率关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知sinα=$\frac{3}{5}$,求sin2(α-$\frac{π}{4}$)及tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$\frac{3π}{2}$<θ<2π,化简:$\sqrt{1+sinθ}$-$\sqrt{1-sinθ}$=-2sin$\frac{θ}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在平面直角坐标系中,P(3,-4)为角α的终边上一点,则sin(α+$\frac{π}{4}$)=(  )
A.$\frac{\sqrt{2}}{10}$B.-$\frac{\sqrt{2}}{10}$C.$\frac{7\sqrt{2}}{10}$D.-$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设f(x)是定义在R上的周期为3的函数,当x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{3{x}^{2}-x,0≤x≤1}\\{2-x,1<x<2}\end{array}\right.$,则f(-$\frac{5}{2}$)=(  )
A.-1B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z=1+i,则$|{\frac{{\sqrt{2}i}}{z}}|$=(  )
A.1B.$\frac{1}{2}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.三名同学去参加甲、乙、丙、丁四个不同的兴趣小组,去那个兴趣小组可以自由选择,但甲小组至少有一人参加,则不同的选择方案共有(  )
A.16种B.18种C.37种D.48种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,A=60°,BC=$\sqrt{10}$,D是AB边上的一点,CD=$\sqrt{2}$,△BCD的面积为1,则AC的长为(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(Ⅰ)设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M. 证明:|$\frac{1}{3}$a+$\frac{1}{6}$b|<$\frac{1}{4}$;
(Ⅱ)若函数f(x)=|2x+1|+|2x-3|,关于x的不等式f(x)-log2(a2-3a)>2恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案