精英家教网 > 高中数学 > 题目详情
5.已知sinα=$\frac{3}{5}$,求sin2(α-$\frac{π}{4}$)及tan2α的值.

分析 由诱导公式和二倍角公式可得sin2(α-$\frac{π}{4}$),再由同角三角函数基本关系可得sin2α,可得tan2α.

解答 解:∵sinα=$\frac{3}{5}$,∴sin2(α-$\frac{π}{4}$)=sin(2α-$\frac{π}{2}$)
=-cos2α=2sin2α-1=2×($\frac{3}{5}$)2-1=-$\frac{7}{25}$,
∴cos2α=$\frac{7}{25}$,sin2α=±$\sqrt{1-co{s}^{2}2α}$=±$\frac{24}{25}$
∴tan2α=$\frac{sin2α}{cos2α}$=±$\frac{24}{7}$

点评 本题考查和差角的三角函数公式,涉及诱导公式和同角三角函数基本关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥S-ABCD中,SA=SD=BC,底面ABCD为正方形,且平面SAD⊥平面ABCD,M,N分别是AB,SC的中点.
(1)求证:MM∥平面SAD;
(2)求二面角S-CM-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若实数x、y满足不等式组$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,且z=ax+y仅在点P(-$\frac{5}{2}$,$\frac{5}{2}$)处取得最小值,则a的取值范围为(  )
A.0<a<1B.a>1C.a≥1D.a≤0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.将5本不同的书分给4名学生,每人至少分1本,则不同的分法有240种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,直线l的方程是y=8,圆C的参数方程是$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}\right.$(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求直线l和圆C的极坐标方程;
(2)射线OM:θ=α(其中$0<α<\frac{π}{2}$)与圆C交于O、P两点,与直线l交于点M,射线ON:$θ=α+\frac{π}{2}$与圆C交于O、Q两点,与直线l交于点N,求$\frac{|OP|}{|OM|}•\frac{|OQ|}{|ON|}$的最大值;
(3)在(2)的条件下,求三角形OMN的内切圆圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点为F,不垂直于x轴且不过F点的直线l与椭圆C交于M,N两点,若∠MFN的外角平分线与直线MN交于点P,则P点的横坐标为(  )
A.2$\sqrt{3}$B.$\frac{4}{3}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若13sinα+5cosβ=9,13cosα+5sinβ=15,则sin(α+β)的值为(  )
A.$\frac{56}{65}$B.$\frac{33}{65}$C.$\frac{5}{6}$D.$\frac{16}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}中,a1+a4+a7=15,a2•a4•a6=45,求此数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=xlnx在点(x0,f(x0))处的切线与直线2x+y+1=0垂直,则x0=(  )
A.$\frac{1}{{e}^{2}}$B.$\frac{1}{e}$C.$\frac{\sqrt{e}}{e}$D.$\sqrt{e}$

查看答案和解析>>

同步练习册答案