精英家教网 > 高中数学 > 题目详情
14.函数f(x)=$\frac{1}{lnx}$的大致图象为(  )
A.B.C.D.

分析 根据lnx的符号判断f(x)的符号,得出答案.

解答 解:当0<x<1时,lnx<0,∴f(x)<0,
当x>1时,ln>0,∴f(x)>0,
故选A.

点评 本题考查了对数函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知x,y∈R,(  )
A.若|x-y2|+|x2+y|≤1,则${(x+\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$
B.若|x-y2|+|x2-y|≤1,则${(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{3}{2}$
C.若|x+y2|+|x2-y|≤1,则${(x+\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$
D.若|x+y2|+|x2+y|≤1,则${(x-\frac{1}{2})^2}+{(y+\frac{1}{2})^2}≤\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的公差不为0,前n项和为Sn,S5=25,S1,S2,S4成等比数列.
(1)求an与Sn
(2)设${b_n}=\frac{2n+1}{{{S_n}{S_{n+1}}}}$,求证:b1+b2+b3+…+bn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(Ⅰ)已知函数f(x)=|x+1|+|x-a|(a>0),若不等式f(x)≥5的解集为{x|x≤-2或x≥3},求a的值;
(Ⅱ) 已知实数a,b,c∈R+,且a+b+c=m,求证:$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$≥$\frac{9}{2m}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)的图象与x轴的相邻两个交点的距离为$\frac{π}{2}$.
(1)求w的值;
(2)设函数g(x)=f(x)+2cos2x-1,求g(x)在区间$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在矩形ABCD中,|AB|=4,|AD|=2,O为AB中点,P,Q分别是AD和CD的中点,且直线AQ与BP的交点在椭圆E:$\frac{x^2}{a^2}$+y2=1(a>0)上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设R为椭圆E的右顶点,T为椭圆E的上顶点,M为椭圆E第一象限部分上一点,求梯形ORMT面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知O为△ABC的外心,且$\overrightarrow{BO}=λ\overrightarrow{BA}+μ\overrightarrow{BC}$.
①若∠C=90°,则λ+μ=$\frac{1}{2}$;
②若∠ABC=60°,则λ+μ的最大值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设Sn为等差数列{an}的前n项和,若a2017=S2017=2017,则首项a1=(  )
A.-2014B.-2015C.-2016D.-2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow a,\overrightarrow b$的夹角为120°,且$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,则向量$\overrightarrow a+\overrightarrow b$在向量$\overrightarrow a$方向上的投影是(  )
A.0B.$\frac{2}{3}$C.-1D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案