精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C的离心率为,短轴长为4.

1)求椭圆C的标准方程;

2)已知不经过点P02)的直线l交椭圆CAB两点,MAB上满足,问直线是否过定点,若过求定点坐标;若不过,请说明理由。

【答案】(1)(2)直线恒过定点,详见解析

【解析】

1)根据题意可得,解出方程可得椭圆的标准方程;(2)设,根据向量的关系以及三角形的性质可得外接圆的直径,即,根据点AB在直线上可得,联立直线与椭圆的方程,运用韦达定理代入可得,解出方程,代入直线中即可得定点.

解:(1)由题意得解得

所以椭圆的标准方程为

2)设

,所以

因为上满足,所以的中点.

,即

所以线段外接圆的直径,

所以

在直线上,

所以

联立

因为直线与椭圆交于不同的两点,

所以

由韦达定理得代入(*)中,得

解得

所以直线

所以直线过定点(舍去),

综上所述:直线恒过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地要建造一个边长为2(单位:)的正方形市民休闲公园,将其中的区域开挖成一个池塘,如图建立平面直角坐标系后,点的坐标为,曲线是函数图像的一部分,过边上一点在区域内作一次函数)的图像,与线段交于点(点不与点重合),且线段与曲线有且只有一个公共点,四边形为绿化风景区.

1)求证:

2)设点的横坐标为

①用表示两点的坐标;

②将四边形的面积表示成关于的函数,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有( )

①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;

②用简单随机抽样的方法从新生中选出100人;

③西部地区学生小刘被选中的概率为

④中部地区学生小张被选中的概率为

A. ①④ B. ①③ C. ②④ D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为菱形,GACBD交点,

(I)证明:平面平面

(II)若 三棱锥的体积为,求该三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数的两个零点为.

(I)求曲线在点处的切线方程;

(II)求函数的单调区间;

(III)求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了检查生产产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.下表是甲流水线样本的频数分布表,下图是乙流水线样本的频率分布直方图.

甲流水线样本的频数分布表

质量指标值

频数

9

10

17

8

6

乙流水线样本的频率分布直方图

1)根据图形,估计乙流水线生产的产品的该项质量指标值的中位数;

2)设该企业生产一件合格品获利100元,生产一件不合格品亏损50元,若某个月内甲、乙两条流水线均生产了1000件产品,若将频率视为概率,则该企业本月的利润约为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)试判断函数上的单调性,并说明理由;

2)若是在区间上的单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面ABCD,底部ABCD为菱形,ECD的中点.

(Ⅰ)求证:BD⊥平面PAC

(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE

(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论函数的单调性;

,对任意的恒成立,求整数的最大值;

求证:当时,

查看答案和解析>>

同步练习册答案