| A. | 12 | B. | 24 | C. | 30 | D. | 36 |
分析 先涂前三个圆,再涂后三个圆.若涂前三个圆用3种颜色,求出不同的涂法种数.若涂前三个圆用2种颜色,再求出涂法种数,把这两类涂法的种数相加,即得所求.
解答 解:先涂前三个圆,再涂后三个圆.
因为种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,
分两类,
第一类,前三个圆用3种颜色,三个圆也用3种颜色,
若涂前三个圆用3种颜色,有A33=6种方法;则涂后三个圆也用3种颜色,有C21C21=4种方法,
此时,故不同的涂法有6×4=24种.
第二类,前三个圆用2种颜色,后三个圆也用2种颜色,
若涂前三个圆用2种颜色,则涂后三个圆也用2种颜色,共有C31C21=6种方法.
综上可得,所有的涂法共有24+6=30 种.
故选:C.
点评 本题考查排列、组合及简单计数问题,体现了分类讨论的数学思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{9}{8}$ | C. | $\frac{9}{4}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=±\frac{{\sqrt{2}}}{2}x$ | B. | $y=±\sqrt{2}x$ | C. | $y=±\sqrt{3}x$ | D. | y=±2x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,1] | B. | (-∞,-1] | C. | (-∞,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ① | B. | ②与③ | C. | ①与② | D. | ①②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1990 | B. | 1991 | C. | 1989 | D. | 1988 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com