精英家教网 > 高中数学 > 题目详情
11.什么是函数的概念.

分析 函数的概念分为传统概念和近代概念,分别从变化和集合间元素对应的角度入手,进而可得答案.

解答 解:函数的传统概念:
一般的,在一个变化过程中,有两个变量x、y,如果给定一个x值,相应的就确定唯一的一个y,那么就称y是x的函数;
函数的近代概念:
设A,B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称 f:A→B 为从集合A到集合B的一个函数,记作 y=f(x),x∈A

点评 本题考查的知识点是函数的概念,熟练掌握函数的概念是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.用集合表示数集{3,x,x2-2x}中实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列函数的值域.
(1)y=$\frac{2x+1}{x-1}$(x≠1);
(2)y=$\frac{1-{2}^{x}}{1+{2}^{x}}$;
(3)y=x+$\sqrt{2x+1}$(变式为y=x-$\sqrt{2x+1}$);
(4)y=4x+2x+1
(5)y=x+$\frac{1}{x}$(x>0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若m=$\root{3}{2}$+1,则$\frac{{m}^{3}+{m}^{4}}{{m}^{3}+1}$的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤-2}\\{{x}^{2}+2x,-2<x<2}\\{2x-1,x≥2}\end{array}\right.$
(1)f(-5),f(-$\sqrt{3}$),f(f(-$\frac{5}{2}$))的值.
(2)若f(a)=3,求实数a的值.
(3)若f(m)>m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点(2,99)在函数f(x)=lg(x+b)的反函数的图象上.
(1)求实数b的值;
(2)若0<f(1-2x)-f(x)<1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=$\frac{1}{x+2}$(x≠-2.且x∈R),g(x)=x2+1(x∈R).
(1)f(2),g(1)的值;
(2)f[g(2)]的值;
(3)求f(x),g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.计算log5$\underset{\underbrace{\sqrt{5\sqrt{5\sqrt{…\sqrt{5}}}}}}{n个}$=1-$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中,不正确命题的个数为(  )
①函数y=ax(a>1)与它的反函数y=logax(a>1)的图象没有公共点;
②若函数y=f(x)有反函数,则它一定是单调函数;
③若函数y=f(x)存在反函数y=f-1(x),则必有f[f-1(x)]=f-1[f(x)]=x成立;
④函数与它的反函数在相应区间上有相同的单调性.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案