【题目】将函数
的图象上所有点的横坐标缩短到原来的
倍(纵坐标不变),再将所得的图象向左平移
个单位长度后得到函数
的图象.
(1)写出函数
的解析式;
(2)若对任意
,
恒成立,求实数
的取值范围;
(3)求实数
和正整数
,使得
在
上恰有
个零点.
【答案】(1)
;(2)
;(3)见解析.
【解析】
(1)利用三角函数
的图象变换,即可求得函数的解析式;
(2)令
,则
恒成立,再根据二次函数的图象与性质,即可求解;
(3)由题意可得
的图象与
在
上有2019个交点,分类讨论,即可求得
和
的值.
(1)把函数
的图象上所有点的横坐标缩短到原来的
倍,得到函数
的图象,再向左平移
个单位长度后得到函数
的图象,
故函数
的解析式为
.
(2)若对于任意
,则
,所以
,
又由
恒成立,
令
,则
恒成立,
则
,解得
.
(3)因为
在
上恰有
个零点,
故函数
的图象与
在
上有2019个交点,
当
时,
,
①当
或
时,函数
的图象与
在
上无交点;
②当
或
时,函数
的图象与
在
上仅有一个交点,
此时要使得函数
的图象与
在
上有2019个交点,则
;
③当
或
时,函数
的图象与
在
上2个交点,
此时要使得函数
的图象与
在
上的交点个数,不能是2019个;
④当
时,函数
的图象与
在
上3个交点,
此时要使得函数
的图象与
在
上有2019个交点,则
;
综上可得,当
或
时,
;当
时,
.
科目:高中数学 来源: 题型:
【题目】为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“专项附加扣除”就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自2019年1月1日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得如下2×2列联表:
40岁及以下 | 40岁以上 | 合计 | |
基本满意 | 15 | 30 | 45 |
很满意 | 25 | 10 | 35 |
合计 | 40 | 40 | 80 |
(1)根据列联表,能否有99%的把握认为满意程度与年龄有关?
(2)为了帮助年龄在40岁以下的未购房的8名员工解决实际困难,该企业拟员工贡献积分
(单位:分)给予相应的住房补贴
(单位:元),现有两种补贴方案,方案甲:
;方案乙:
.已知这8名员工的贡献积分为2分,3分,6分,7分,7分,11分,12分,12分,将采用方案甲比采用方案乙获得更多补贴的员工记为“
类员工”.为了解员工对补贴方案的认可度,现从这8名员工中随机抽取4名进行面谈,求恰好抽到3名“
类员工”的概率。
附:
,其中
.
参考数据:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体QPABCD为一简单组合体,在底面ABCD中,∠DAB=60°,AD⊥DC,AB⊥BC,QD⊥平面ABCD,PA∥QD,PA=1,AD=AB=QD=2.
![]()
(1)求证:平面PAB⊥平面QBC;
(2)求该组合体QPABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每卦有三根线组成(“
”表示一根阳线,“
”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查,派出10人的调查组,先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分),他们给出甲、乙两个城市分数的茎叶图如图所示:
![]()
(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,并说明理由;
(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率.
(参考数据:
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱
中,
,
,
为
的中点.
![]()
(I)若
为
上的一点,且
与直线
垂直,求
的值;
(Ⅱ)在(I)的条件下,设异面直线
与
所成的角为45°,求直线
与平面
成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若三角形三边长都是整数且至少有一个内角为
,则称该三角形为“完美三角形”.有关“完美三角形”有以下命题:
(1)存在直角三角形是“完美三角形”
(2)不存在面积是整数的“完美三角形”
(3)周长为12的“完美三角形”中面积最大为
;
(4)若两个“完美三角形”有两边对应相等,且它们面积相等,则这两个“完美三角形”全等.
以上真命题有______.(写出所有真命题的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com