精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线l的参数方程为 (t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ(a≠0).
(Ⅰ)求圆C的直角坐标系方程与直线l的普通方程;
(Ⅱ)设直线l截圆C的弦长等于圆C的半径长的 倍,求a的值.

【答案】解:(Ⅰ)直线l的参数方程为 (t为参数),消去参数t,可得:4x+3y﹣8=0;
由圆C的极坐标方程为ρ=asinθ(a≠0),可得ρ2=ρasinθ,根据ρsinθ=y,ρ2=x2+y2
可得圆C的直角坐标系方程为:x2+y2﹣ay=0,即
(Ⅱ)由(Ⅰ)可知圆C的圆心为(0, )半径r=
直线方程为4x+3y﹣8=0;
那么:圆心到直线的距离d=
直线l截圆C的弦长为 =2
解得:a=32或a=
故得直线l截圆C的弦长等于圆C的半径长的 倍时a的值为32或
【解析】(Ⅰ)将t参数消去可得直线l的普通方程,根据ρcosθ=x,ρsinθ=y,ρ2=x2+y2带入圆C可得直角坐标系方程;(Ⅱ)利用弦长公式直接建立关系求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+ax2+bcosx在点 处的切线方程为
(Ⅰ)求a,b的值,并讨论f(x)在 上的增减性;
(Ⅱ)若f(x1)=f(x2),且0<x1<x2<π,求证:
(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足nan+2﹣(n+2)an=λ(n2+2n),其中a1=1,a2=2,若an<an+1n∈N*恒成立,则实数λ的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为 的正方形ABCD中,E、O分别为 AD、BC的中点,沿 EO将矩形ABOE折起使得∠BOC=120°,如图2所示,点G 在BC上,BG=2GC,M、N分别为AB、EG中点.
(Ⅰ)求证:MN∥平面OBC;
(Ⅱ)求二面角 G﹣ME﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在三棱锥P﹣ABC中,VPABC= ,∠APC= ,∠BPC= ,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱锥P﹣ABC外接球的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= sin2x+sinxcosx﹣
(1)求f(x)的单调增区间;
(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若A为锐角且f(A)= ,b+c=4,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+ )(ω>0)的周期为π,则下列选项正确的是(
A.函数f(x)的图象关于点( ,0)对称
B.函数f(x)的图象关于点(﹣ ,0)对称
C.函数f(x)的图象关于直线x= 对称
D.函数f(x)的图象关于直线x=﹣ 对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的右焦点为F(2,0),点P(2, )在椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F的直线,交椭圆C于A、B两点,点M在椭圆C上,坐标原点O恰为△ABM的重心,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了解各校《国学》课程的教学效果,组织全市各学校高二年级全体学生参加了国学知识水平测试,测试成绩从高到低依次分为A、B、C、D四个等级,随机调阅了甲、乙两所学校各60名学生的成绩,得到如图所示分布图:
(Ⅰ)试确定图中实数a与b的值;
(Ⅱ)规定等级D为“不合格”,其他等级为“合格”,以事件发生的频率作为相应事件发生的概率,若从甲、乙两校“合格”的学生中各选1名学生,求甲校学生成绩高于乙校学生成绩的概率.

查看答案和解析>>

同步练习册答案