精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2sin(ωx+ )(ω>0)的周期为π,则下列选项正确的是(
A.函数f(x)的图象关于点( ,0)对称
B.函数f(x)的图象关于点(﹣ ,0)对称
C.函数f(x)的图象关于直线x= 对称
D.函数f(x)的图象关于直线x=﹣ 对称

【答案】B
【解析】解:函数f(x)=2sin(ωx+ )(ω>0)的周期为π, 即T=
∴ω=2.
则f(x)=2sin(2x+ ),
由对称轴方程:2x+ = ,(k∈Z)
得:x= ,(k∈Z)
经考查C,D选项不对.
由对称中心的横坐标:2x+ =kπ,(k∈Z)
得:x= ,(k∈Z)
当k=0时,可得图象的对称中心坐标为(﹣ ,0).
故选:B.
【考点精析】根据题目的已知条件,利用正弦函数的对称性的相关知识可以得到问题的答案,需要掌握正弦函数的对称性:对称中心;对称轴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,椭圆C的参数方程为 (θ为参数).
(I)以原点为极点,x轴的正半轴为极轴建立极坐标系,求椭圆C的极坐标方程;
(Ⅱ)设M(x,y)为椭圆C上任意一点,求x+2y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为某工厂工人生产能力频率分布直方图,则估计此工厂工人生产能力的平均值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为 (t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ(a≠0).
(Ⅰ)求圆C的直角坐标系方程与直线l的普通方程;
(Ⅱ)设直线l截圆C的弦长等于圆C的半径长的 倍,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有A,B,C,D,E五辆汽车,其中A、B两辆汽车的车牌尾号均为1,C、D两辆汽车的车牌尾号均为2,E车的车牌尾号为6,已知在非限行日,每辆车可能出车或不出车,A、B、E三辆汽车每天出车的概率均为 ,C、D两辆汽车每天出车的概率均为 ,且五辆汽车是否出车相互独立,该公司所在地区汽车限行规定如下:

车牌尾号

0和5

1和6

2和7

3和8

4和9

限行日

星期一

星期二

星期三

星期四

星期五


(1)求该公司在星期一至少有2辆汽车出车的概率;
(2)设X表示该公司在星期二和星期三两天出车的车辆数之和,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(α)=cosα
(Ⅰ)当α为第二象限角时,化简f(α);
(Ⅱ)当α∈( ,π)时,求f(α)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个不相等的非零向量 ,两组向量均由 均由2个 和2个 排列而成,记S= + + + ,Smin表示S所有可能取值中的最小值,则下列命题中正确的个数为( )
①S有3个不同的值;
②若 ,则Smin与| |无关;
③若 ,则Smin与| |无关;
④若| |=2| ,Smin=4 ,则 的夹角为
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆C1 + =1(a>b>0),长轴的右端点与抛物线C2:y2=8x的焦点F重合,且椭圆C1的离心率是
(1)求椭圆C1的标准方程;
(2)过F作直线l交抛物线C2于A,B两点,过F且与直线l垂直的直线交椭圆C1于另一点C,求△ABC面积的最小值,以及取到最小值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,不等式 的解集为[-1,5]
(1)求实数 的值;
(2)若 恒成立,求实数 的取值范围。

查看答案和解析>>

同步练习册答案