精英家教网 > 高中数学 > 题目详情
8.设函数f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax,x∈R.
(1)当a=-1时,求f(x)的单调区间;
(2)若f(x)在($\frac{2}{3}$,+∞)内存在单调递增区间,求a的取值范围;
(3)当0<a<2时,f(x)在[1,4]上的最小值为-$\frac{16}{3}$,求f(x)在该区间上的最大值.

分析 (1)求出函数的导数,得到导函数的符号,求出函数的单调性即可;
(2)求出函数的导数,得到函数的极大值点,解关于a的不等式,求出a的范围即可;
(3)求出x2的范围,解关于a的方程,求出a的值和x2的值,从而求出f(x)在区间[1,4]上的最大值.

解答 解:(1)a=-1时,f(x)=)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2-2x,
∵f′(x)=-${(x-\frac{1}{2})}^{2}$-$\frac{7}{4}$<0,
∴f(x)在R递减;
(2)由f′(x)=-x2+x+2a=0,
解得:x1=$\frac{1-\sqrt{1+8a}}{2}$,x2=$\frac{1+\sqrt{1+8a}}{2}$,
则极大值点是x2,令$\frac{1+\sqrt{1+8a}}{2}$>$\frac{2}{3}$,
解得:a>-$\frac{1}{9}$,
∴a的范围是(-$\frac{1}{9}$,+∞);
(3)由(2)得f(x)在(-∞,x1),(x2,+∞)递减,在(x1,x2)递增,
当0<a<2时,x1∈($\frac{1-\sqrt{17}}{2}$,0),x2∈(1,$\frac{1+\sqrt{17}}{2}$),
故x1<1<x2<4,∴f(x)在[1,4]上的最大值是f(x2),
∵f(4)-f(1)=-$\frac{27}{2}$+6a<0,
∴f(x)在[1,4]上的最小值是f(4)=-$\frac{40}{3}$+8a=-$\frac{16}{3}$,
解得:a=1,x2=2,
∴f(x)在区间[1,4]上的最大值是f(2)=$\frac{10}{3}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sin(2x+$\frac{π}{3}$)-$\sqrt{3}$cos(2x+$\frac{π}{3}$).
(Ⅰ)求函数的单调增区间;
(Ⅱ)若f(α)=$\frac{6}{5}$,α∈(0,$\frac{π}{4}$),求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在区间[-2,2]内任取一个整数x,在区间[0,4]内任取一个整数y,则y≥x2的概率等于(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.ABCD是复平面内的平行四边形,A、B、C三点对应的复数分别是1+3i、-i、2+i.
(Ⅰ)求点D对应的复数;
(Ⅱ)求△ABC的边BC上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设Sn为等差数列{an}的前n项和,且a1-a7+a13=6,则S13=(  )
A.78B.91C.39D.26

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等差数列{an}中,a6=5,a10=6,则公差d等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,其中正视图和俯视图都是腰长为2的等腰三角形,俯视图是半径为1的圆,则该几何体的表面积是(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图所示(算法流程图)的输出值x=12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.甲射击命中目标的概率是$\frac{1}{4}$,乙命中目标的概率是$\frac{1}{3}$,丙命中目标的概率是$\frac{1}{2}$,现在三人同时射击目标,则目标被击中的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{4}{5}$D.$\frac{7}{10}$

查看答案和解析>>

同步练习册答案