精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=sin(2x+$\frac{π}{3}$)-$\sqrt{3}$cos(2x+$\frac{π}{3}$).
(Ⅰ)求函数的单调增区间;
(Ⅱ)若f(α)=$\frac{6}{5}$,α∈(0,$\frac{π}{4}$),求cosα的值.

分析 (Ⅰ)由三角函数性质化简得到f(x)=2sin2x,由此能求出函数的单调增区间.
(Ⅱ)法1:由f(α)=2sin2α=$\frac{6}{5}$,得到sin2α=$\frac{3}{5}$,由此先求出cos2α,再由 $α∈(0,\frac{π}{4})$,能求出cosα.
法2:由f(α)=2sin2α=$\frac{6}{5}$,得到sin2α=$\frac{3}{5}$,由此利用二倍角公式和同角三角函数间的关系式得${cos^4}α-{cos^2}α+\frac{9}{100}=0$,再由 $α∈(0,\frac{π}{4})$,能求出cosα.

解答 解:(Ⅰ)f(x)=$sin(2x+\frac{π}{3})-\sqrt{3}cos(2x+\frac{π}{3})=2sin(2x+\frac{π}{3}-\frac{π}{3})$=2sin2x…(3分)
∴函数y=sinX的单调增区间为$[-\frac{π}{2}+2kπ,\frac{π}{2}+2kπ],k∈Z$
∴由$-\frac{π}{2}+2kπ$≤2x≤$\frac{π}{2}+2kπ$,k∈Z
得$-\frac{π}{4}+kπ$≤x≤$\frac{π}{4}+kπ$,k∈Z,…(4分)
∴函数的单调增区间:$[-\frac{π}{4}+kπ$,$\frac{π}{4}+kπ]$,k∈Z,…(5分)
(Ⅱ)解法1:$f(α)=2sin2α=\frac{6}{5}⇒$$sin2α=\frac{3}{5}$,…(7分)
又$α∈(0,\frac{π}{4})$,故$cos2α=\frac{4}{5}=2{cos^2}α-1$…(9分)
∴$cosα=\frac{{3\sqrt{10}}}{10}$,…(10分)
解法2:$f(α)=2sin2α=\frac{6}{5}⇒$$sin2α=2sinαcosα=\frac{3}{5}$,…(7分)
又sin2α+cos2α=1…(8分)
消去sinα,得${cos^4}α-{cos^2}α+\frac{9}{100}=0$,
解得${cos^2}α=\frac{1}{10}$或${cos^2}α=\frac{9}{10}$,
从而$cosα=±\frac{{\sqrt{10}}}{10}$,或$cosα=±\frac{{3\sqrt{10}}}{10}$,…(9分)
因为$α∈(0,\frac{π}{4})$,所以$cosα=\frac{{3\sqrt{10}}}{10}$…(10分)

点评 本题考查三角函数的增区间和函数值的求法,是中档题,解题要认真审题,注意二倍角公式、同角三角函数关系式、三角函数恒等式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知三棱锥P-ABC的顶点P、A、B、C在球O的表面上,△ABC是边长为$\sqrt{3}$的等边三角形,如果球O的表面积为36π,那么P到平面ABC距离的最大值为$3+2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,边长为2的正△ABC顶点A在平面α上,B,C在平面α的同侧,M为BC的中点.若△ABC在平面α上的投影是以A为直角顶点的△A1B1C1,则M到平面α的距离的取值范围是[$\sqrt{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,正三棱锥O-ABC的各边长为2,求该三棱锥的体积及表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若P,S分别变为:p:(x-m)2>3(x-m),s:x2+3x-4<0,若x∈p是x∈s的必要不充分条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={x|x=a0+a1×2+a2×22+a3×23},其中ai∈{0,1,2}(i=0,1,2,3),且a0≠0,则A中所有元素之和等于837.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是R上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2015)+f(2016)的值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{AC}$=10,$\overrightarrow{BA}$•$\overrightarrow{BC}$=6,则|${\overrightarrow{AB}}$|=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax,x∈R.
(1)当a=-1时,求f(x)的单调区间;
(2)若f(x)在($\frac{2}{3}$,+∞)内存在单调递增区间,求a的取值范围;
(3)当0<a<2时,f(x)在[1,4]上的最小值为-$\frac{16}{3}$,求f(x)在该区间上的最大值.

查看答案和解析>>

同步练习册答案