精英家教网 > 高中数学 > 题目详情
20.某几何体的三视图如图所示,其中正视图和俯视图都是腰长为2的等腰三角形,俯视图是半径为1的圆,则该几何体的表面积是(  )
A.πB.C.D.

分析 由三视图可知:该几何体为一个圆锥.利用表面积计算公式即可得出.

解答 解:由三视图可知:该几何体为一个圆锥.
其表面积S=π×12+$\frac{1}{2}×$2π×1×2=3π.
故选:C.

点评 本题考查了三视图的有关知识、圆锥的体积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是R上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2015)+f(2016)的值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知△ABC的周长为c,它的内切圆半径为r,则△ABC的面积为$\frac{1}{2}$cr.运用类比推理可知,若三棱椎D-ABC的表面积为6$\sqrt{3}$,内切球的半径为$\frac{1}{2}$,则三棱锥D-ABC的体积为(  )
A.$\frac{3}{2}$B.$\sqrt{3}$C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax,x∈R.
(1)当a=-1时,求f(x)的单调区间;
(2)若f(x)在($\frac{2}{3}$,+∞)内存在单调递增区间,求a的取值范围;
(3)当0<a<2时,f(x)在[1,4]上的最小值为-$\frac{16}{3}$,求f(x)在该区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥S-ABCD中,SA⊥底面ABCD,底面ABCD是直角梯形,AD⊥AB,BC∥AD,SA=AB=BC=2,AD=1,M,N分别是SB,SC的中点.
(Ⅰ)求证:AM∥平面SCD;
(Ⅱ)求三棱锥S-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.甲袋中有5个红球,2个白球和3个黑球,乙袋中有4个红球,3个白球和3个黑球.先从甲袋中随机取出一球放入乙袋,分别以A1,A2和A3表示由甲袋取出的球是红球,白球和黑球的事件;再从乙袋中随机取出一球,以B表示由乙袋取出的球是红球的事件.则下列结论①P(B)=$\frac{9}{22}$;②P(B|A1)=$\frac{2}{5}$;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件.
其中正确的是①④(写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示的程序框图,它的输出结果是(  )
A.-1B.0C.1D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}的前n项和为Sn,且a1=0,an+1=$\frac{n}{{S}_{n+1}+{S}_{n}}$(n∈N+).则a33=(  )
A.4(4$\sqrt{2}$-$\sqrt{31}$)B.4(4$\sqrt{2}$-$\sqrt{30}$)C.4($\sqrt{33}$-4$\sqrt{2}$)D.4($\sqrt{33}$-$\sqrt{31}$)

查看答案和解析>>

同步练习册答案