精英家教网 > 高中数学 > 题目详情
5.如图,在四棱锥S-ABCD中,SA⊥底面ABCD,底面ABCD是直角梯形,AD⊥AB,BC∥AD,SA=AB=BC=2,AD=1,M,N分别是SB,SC的中点.
(Ⅰ)求证:AM∥平面SCD;
(Ⅱ)求三棱锥S-BCD的体积.

分析 (Ⅰ)由M,N分别为SB,SC的中点,得四边形ADNM是平行四边形,即可证得AM∥平面SCD;
(Ⅱ)由侧棱SA⊥底面ABCD,利用锥体的体积公式,可求三棱锥S-BCD的体积.

解答 证明:(Ⅰ)∵M,N分别为SB,SC的中点,
∴MN∥BC,且MN=$\frac{1}{2}$BC,
又∵AD∥BC,且AD=$\frac{1}{2}$BC,∴MN∥AD,MN=AD,
∴四边形ADNM是平行四边形,∴AM∥ND,
又∵AM?平面SCD,ND?平面SCD,
∴AM∥平面SCD.
解:(Ⅱ)∵SA⊥底面ABCD,
∴三棱锥S-BCD的高为SA,
∵S梯形ABCD=$\frac{1}{2}$(AD+BC)•AB=3,S△ABD=$\frac{1}{2}AD•AB$=1
∴S△BCD=S梯形ABCD-S△ABD=2.
∴V三棱锥S-BCD=$\frac{1}{3}$S△BCD•SA=$\frac{1}{3}×2×2$=$\frac{4}{3}$.

点评 本题考查四棱锥的体积,考查线面平行的证明,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数f(x)=log3x-$\frac{1}{x}$的零点所在的区间是(n,n+1)(n∈N*)则n=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.ABCD是复平面内的平行四边形,A、B、C三点对应的复数分别是1+3i、-i、2+i.
(Ⅰ)求点D对应的复数;
(Ⅱ)求△ABC的边BC上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等差数列{an}中,a6=5,a10=6,则公差d等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,其中正视图和俯视图都是腰长为2的等腰三角形,俯视图是半径为1的圆,则该几何体的表面积是(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.由1,2,3,0组成没有重复数字的三位数,其中0不在个位上,则这些三位数的和为(  )
A.1320B.1332C.2532D.2544

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图所示(算法流程图)的输出值x=12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等差数列{an}共有2n+1项,所有奇数项之和为132,所有偶数项之和为120,则n等于(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AD=PD=2,PA=2$\sqrt{2}$,∠PDC=120°.
(1)如图2,设点E为AB的中点,点F在PC的中点,求证:EF∥平面PAD;
(2)已知网络纸上小正方形的边长为0.5,请你在网格纸用粗线画图1中四棱锥P-ABCD的俯视图(不需要标字母),并说明理由.

查看答案和解析>>

同步练习册答案