精英家教网 > 高中数学 > 题目详情
15.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AD=PD=2,PA=2$\sqrt{2}$,∠PDC=120°.
(1)如图2,设点E为AB的中点,点F在PC的中点,求证:EF∥平面PAD;
(2)已知网络纸上小正方形的边长为0.5,请你在网格纸用粗线画图1中四棱锥P-ABCD的俯视图(不需要标字母),并说明理由.

分析 (1)要证EF∥平面PAD,需要证面GEF∥面PAD,需要证GF∥PD,GE∥AD,易得证明思路.
(2)证明AD⊥平面PCD,P在平面ABCD的射影H在CD的延长线上,且DH=1,即可得出四棱锥P-ABCD的俯视图.

解答 (1)证明:取DC的中点G,连接EG、FG,
∵F是PC的中点,G是DC的中点,
∴GF是△PCD的中位线,GF∥PD;
∵G是DC的中点,E是AB的中点,
∴GE是矩形ABCD的中位线,GE∥AD;
GE、GF⊆面GEF,GE与GF相交,∴面GEF∥面PAD,
∵EF⊆面GEF,∴EF∥平面PAD.
(2)解:∵AD=PD=2,PA=2$\sqrt{2}$,∴AD⊥PD,
∵底面ABCD是正方形,
∴AD⊥DC,
∵PD∩DC=D,
∴AD⊥平面PCD,
∴P在平面ABCD的射影H在CD的延长线上,且DH=1.
俯视图如图所示.

点评 本题考查了直线与平面垂直的判定,考查俯视图,考查了学生的空间想象能力和思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥S-ABCD中,SA⊥底面ABCD,底面ABCD是直角梯形,AD⊥AB,BC∥AD,SA=AB=BC=2,AD=1,M,N分别是SB,SC的中点.
(Ⅰ)求证:AM∥平面SCD;
(Ⅱ)求三棱锥S-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2a2=2b2+2c2-bc,且a=2b,
(1)求cosA;
(2)求cos(A-B)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某小组共有5名学生,其中男生3名,女生2名,现选举2名代表,则恰有1名女生当选的概率为(  )
A.$\frac{1}{5}$B.$\frac{3}{5}$C.$\frac{1}{10}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}的前n项和为Sn,且a1=0,an+1=$\frac{n}{{S}_{n+1}+{S}_{n}}$(n∈N+).则a33=(  )
A.4(4$\sqrt{2}$-$\sqrt{31}$)B.4(4$\sqrt{2}$-$\sqrt{30}$)C.4($\sqrt{33}$-4$\sqrt{2}$)D.4($\sqrt{33}$-$\sqrt{31}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=x2+ax+3在区间(1,2)上是单调函数,则实数a的取值范围是(  )
A.(-∞,-4]B.[-2,+∞)C.[-4,-2]D.(-∞,-4]∪[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知复数z=2+bi(i为虚数单位),b为正实数,且z2为纯虚数.
(1)求复数z;
(2)若复数ω=$\frac{z}{1-i}$,求ω的模.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.平行六面体ABCD-A1B1C1D1中,底面是边长为1的正方形,侧棱AA1的长为2,且∠A1AB=∠A1AD=120°,则AC1的长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x-1|+|x-2|.
(1)求证:f(x)≥1;
(2)若方程f(x)=$\frac{{a}^{2}+2}{\sqrt{{a}^{2}+1}}$有解,求x的取值范围.

查看答案和解析>>

同步练习册答案