分析 (1)由已知求出z2,利用实部为0且虚部不为0求得b,则z可求;
(2)把z代入ω=$\frac{z}{1-i}$,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.
解答 解:(1)由z=2+bi,得z2 =(2+bi)2=4-b2+4bi,
∵z2为纯虚数,∴$\left\{\begin{array}{l}{4-{b}^{2}=0}\\{4b≠0}\end{array}\right.$,得b=±2,
又b>0,∴b=2,
则z=2+2i;
(2)ω=$\frac{z}{1-i}$=$\frac{2+2i}{1-i}=\frac{2(1+i)^{2}}{(1-i)(1+i)}=2i$,
∴|ω|=2.
点评 本题考查复数代数形式的乘除运算,考查复数相等的条件,考查了复数模的求法,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{7}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2.$\stackrel{•}{6}$ | B. | 3.0$\stackrel{•}{6}$ | C. | 4.1$\stackrel{•}{6}$ | D. | 4.5$\stackrel{•}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p是真命题,¬p:?x0∈R,使得x02+x0+1>0 | |
| B. | p是真命题,¬p:?x∈R,使得x2+x+1>0 | |
| C. | p是假命题,¬p:?x0∈R,使得x02+x0+1>0 | |
| D. | p是假命题,¬p:?x∈R,使得x2+x+1>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com