精英家教网 > 高中数学 > 题目详情
5.如图,在棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为直角梯形,其中AB∥CD,AB⊥AD,AB=AC=2CD=4,AA1=3,过AC的平面分别与A1B1,B1C1交于E1,F1,且E1为A1B1的中点.
(Ⅰ) 求证:平面ACF1E1∥平面A1C1D;
(Ⅱ) 求二面角A1-AC-E1的大小.

分析 (Ⅰ) 连接C1E1,推导出四边形A1D1C1E1是平行四边形,从而四边形ADC1E1是平行四边形,由此能证明平面ACF1E1∥平面A1C1D.
(Ⅱ) 法一:分别以$\overrightarrow{DA}$,$\overrightarrow{DC}$,$\overrightarrow{D{D_1}}$的方向为x,y,z轴,建立如图所示的空间直角坐标系D-xyz,利用向量法能求出二面角A1-AC-E1的大小.
法二:取分别AC,A1C1的中点O,O1,连结OO1,OB,O1B1,O1B1与E1F1相交于G1,连结OG1,推导出∠O1OG1是二面角A1-AC-E1的平面角,由此能求出二面角A1-AC-E1的大小.

解答 证明:(Ⅰ) 连接C1E1,棱柱ABCD-A1B1C1D1中,A1B1=2D1C1,A1B1∥C1D1
又E1为A1B1的中点,则A1E1$\underline{\underline{∥}}$D1C1
所以四边形A1D1C1E1是平行四边形,则C1E1$\underline{\underline{∥}}$A1D1
又A1D1$\underline{\underline{∥}}$AD,所以C1E1$\underline{\underline{∥}}$AD.
所以四边形ADC1E1是平行四边形,则AE1∥DC1
在棱柱ABCD-A1B1C1D1中,AC∥A1C1
由于AE1,AC都在面ACF1E1内且相交,DC1与A1C1都在面A1C1D内且相交,
所以平面ACF1E1∥平面A1C1D.(6分)
(Ⅱ) 在棱柱ABCD-A1B1C1D1中,AC∥平面A1B1C1D1
平面AF1与平面A1B1C1D1交线为E1F1,则AC∥E1F1,则A1C1∥E1F1
又E1为A1B1的中点,所以F1为B1C1的中点.
方法一:如图,分别以$\overrightarrow{DA}$,$\overrightarrow{DC}$,$\overrightarrow{D{D_1}}$的方向为x,y,z轴,建立如图所示的空间直角坐标系D-xyz,
A($2\sqrt{3}$,0,0),C(0,2,0),A1($2\sqrt{3}$,0,3),E1($2\sqrt{3}$,2,3),
所以$\overrightarrow{AC}=(-2\sqrt{3},\;\;2,\;\;0)$,$\overrightarrow{A{A_1}}=(0,\;\;0,\;\;3)$,$\overrightarrow{A{E_1}}=(0,\;\;2,\;\;3)$.
设平面ACC1A1的法向量$\overrightarrow{m}$=(x1,y1,z1),
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AC}=0}\\{\overrightarrow{m}•\overrightarrow{A{A}_{1}}=0}\end{array}\right.$,得$\left\{\begin{array}{l}-2\sqrt{3}{x_1}+2{y_1}=0\\ 3{z_1}=0\end{array}\right.$,取x1=1,得$\overrightarrow{m}$=(1,$\sqrt{3}$,0).
设平面ACF1E1的法向量$\overrightarrow{n}$=(x2,y2,z2),
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=0}\\{\overrightarrow{n}•\overrightarrow{A{E}_{1}}=0}\end{array}\right.$,得$\left\{\begin{array}{l}-2\sqrt{3}{x_2}+2{y_2}=0\\ 2{y_2}+3{z_2}=0\end{array}\right.$,取x2=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3},3,-2$).
则由cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\sqrt{3}+3\sqrt{3}+0}{\sqrt{1+3+0}•\sqrt{3+9+4}}$=$\frac{\sqrt{3}}{2}$.
所以<$\overrightarrow{m},\overrightarrow{n}$>=30°,故二面角A1-AC-E1的大小为30°.(12分)
方法二:取分别AC,A1C1的中点O,O1
连结OO1,OB,O1B1,O1B1与E1F1相交于G1,连结OG1,如图.
由(Ⅰ),△ABC为等边三角形,则AC⊥OB,
在棱柱ABCD-A1B1C1D1中,
有OO1⊥平面ABCD,所以AC⊥OO1
所以AC⊥平面OBB1A1.所以AC⊥OG1
故∠O1OG1是二面角A1-AC-E1的平面角.(9分)
由题OO1=3,O1G1=$\frac{1}{2}{O_1}{G_1}=\sqrt{3}$,则$tan∠{O_1}O{G_1}=\frac{{\sqrt{3}}}{3}$,
所以∠O1OG1=30°,则二面角A1-AC-E1的大小为30°.(12分)

点评 本题考查面面平行的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图所示的程序框图,它的输出结果是(  )
A.-1B.0C.1D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}的前n项和为Sn,且a1=0,an+1=$\frac{n}{{S}_{n+1}+{S}_{n}}$(n∈N+).则a33=(  )
A.4(4$\sqrt{2}$-$\sqrt{31}$)B.4(4$\sqrt{2}$-$\sqrt{30}$)C.4($\sqrt{33}$-4$\sqrt{2}$)D.4($\sqrt{33}$-$\sqrt{31}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知复数z=2+bi(i为虚数单位),b为正实数,且z2为纯虚数.
(1)求复数z;
(2)若复数ω=$\frac{z}{1-i}$,求ω的模.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)对任意的x∈R都有f′(x)>f(x)恒成立,则(  )
A.3f(ln2)>2f(ln3)B.3f(ln2)=2f(ln3)
C.3f(ln2)<2f(ln3)D.3f(ln2)与2f(ln3)的大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.平行六面体ABCD-A1B1C1D1中,底面是边长为1的正方形,侧棱AA1的长为2,且∠A1AB=∠A1AD=120°,则AC1的长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知三棱锥的三视图如图所示,则该三棱锥最大侧面积为(  )
A.4B.$\sqrt{15}$C.$\sqrt{7}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=12,点F的极坐标为(2$\sqrt{2}$,π),且F在直线l上.
(Ⅰ)若直线l与曲线C交于A、B两点,求|FA|•丨FB丨的值;
(Ⅱ)求曲线C内接矩形周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.

(Ⅰ)求证:AD⊥BM;
(Ⅱ)若$\overrightarrow{DE}$=λ$\overrightarrow{DB}$(0<λ<1),当二面角E-AM-D大小为$\frac{π}{3}$时,求λ 的值.

查看答案和解析>>

同步练习册答案