14£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È+3¦Ñ2sin2¦È=12£¬µãFµÄ¼«×ø±êΪ£¨2$\sqrt{2}$£¬¦Ð£©£¬ÇÒFÔÚÖ±ÏßlÉÏ£®
£¨¢ñ£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA¡¢BÁ½µã£¬Çó|FA|•Ø­FBØ­µÄÖµ£»
£¨¢ò£©ÇóÇúÏßCÄÚ½Ó¾ØÐÎÖܳ¤µÄ×î´óÖµ£®

·ÖÎö £¨I£©Çó³öÇúÏßCµÄÆÕͨ·½³ÌºÍ½¹µã×ø±ê£¬½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëÇúÏßCµÄÆÕͨ·½³ÌÀûÓøùÓëϵÊýµÄ¹ØÏµºÍ²ÎÊýµÄ¼¸ºÎÒâÒåµÃ³ö£»
£¨II£©Éè¾ØÐεĶ¥µã×ø±êΪ$£¨2\sqrt{3}cos¦È£¬2sin¦È£©$£¬$£¨0£¼¦È£¼\frac{¦Ð}{2}£©$£¬ÓɶԳÆÐԿɵÃÍÖÔ²CµÄÄÚ½Ó¾ØÐεÄÖܳ¤£¬Çó³ö´Ëº¯ÊýµÄ×î´óÖµ£®

½â´ð ½â£º£¨I£© µãFµÄ¼«×ø±êΪ$£¨2\sqrt{2}£¬¦Ð£©$ËùÒÔÖ±½Ç×ø±êΪ$£¨-2\sqrt{2}£¬0£©$¡à$\left\{\begin{array}{l}-2\sqrt{2}=m+\frac{{\sqrt{2}}}{2}t\\ 0=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¬¡à$m=-2\sqrt{2}$
ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È+3¦Ñ2sin2¦È=12£¬
ËùÒÔÖ±½Ç×ø±ê·½³ÌΪx2+3y2=12-------------------£¨3·Ö£©
½«Ö±ÏßABµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=-2\sqrt{2}+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©´úÈëÇúÏßCÖ±½Ç×ø±ê·½³ÌÖÐ
¿ÉµÃt2-2t-2=0
ËùÒÔ|FA|•|FB|=2----------------------------£¨6·Ö£©
£¨¢ò£©ÉèÍÖÔ²CµÄÄÚ½Ó¾ØÐÎÔÚµÚÒ»ÏóÏ޵Ķ¥µãΪ$£¨2\sqrt{3}cos¦È£¬2sin¦È£©$£¬$£¨0£¼¦È£¼\frac{¦Ð}{2}£©$
ÓɶԳÆÐԿɵÃÍÖÔ²CµÄÄÚ½Ó¾ØÐεÄÖܳ¤Îª$8\sqrt{3}cos¦È+8sin¦È$=$16sin£¨¦È+\frac{¦Ð}{3}£©$------------£¨9·Ö£©
µ±$¦È+\frac{¦Ð}{3}=\frac{¦Ð}{2}$ʱ£¬¼´$¦È=\frac{¦Ð}{6}$ʱÍÖÔ²CµÄÄÚ½Ó¾ØÐεÄÖܳ¤È¡µÃ×î´óÖµ16£®---------£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬º¯ÊýµÄ×îÖµ£¬²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒ壬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®¼×Éä»÷ÃüÖÐÄ¿±êµÄ¸ÅÂÊÊÇ$\frac{1}{4}$£¬ÒÒÃüÖÐÄ¿±êµÄ¸ÅÂÊÊÇ$\frac{1}{3}$£¬±ûÃüÖÐÄ¿±êµÄ¸ÅÂÊÊÇ$\frac{1}{2}$£¬ÏÖÔÚÈýÈËͬʱÉä»÷Ä¿±ê£¬ÔòÄ¿±ê±»»÷ÖеĸÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{3}{4}$B£®$\frac{2}{3}$C£®$\frac{4}{5}$D£®$\frac{7}{10}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚÀâÖùABCD-A1B1C1D1ÖУ¬AA1¡Íµ×ÃæABCD£¬µ×ÃæABCDΪֱ½ÇÌÝÐΣ¬ÆäÖÐAB¡ÎCD£¬AB¡ÍAD£¬AB=AC=2CD=4£¬AA1=3£¬¹ýACµÄÆ½Ãæ·Ö±ðÓëA1B1£¬B1C1½»ÓÚE1£¬F1£¬ÇÒE1ΪA1B1µÄÖе㣮
£¨¢ñ£© ÇóÖ¤£ºÆ½ÃæACF1E1¡ÎÆ½ÃæA1C1D£»
£¨¢ò£© Çó¶þÃæ½ÇA1-AC-E1µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬BCÊÇ¡ÑOµÄÖ±¾¶£¬ECÓë¡ÑOÏàÇÐÓÚC£¬ABÊÇ¡ÑOµÄÏÒ£¬DÊÇ$\widehat{AC}$µÄÖе㣬BDµÄÑÓ³¤ÏßÓëCE½»ÓÚE£®
£¨¢ñ£©ÇóÖ¤£ºBC•CD=BD•CE£»
£¨¢ò£©Èô$CE=3£¬DE=\frac{9}{5}$£¬ÇóAB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÈýÀâÖùABC-A1B1C1ÖУ¬²àÀâAA1¡ÍÃæABC£¬AC1¡ÍÃæCBA1£¬AC1¡ÉA1C=F£®
£¨1£©Ö¤Ã÷£ºA1C1¡ÍB1C1£®
£¨2£©ÉèA1C1=B1C1=2£¬EΪABµÄÖе㣬ÇóEµãµ½FC1B1µÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªËÄÀâ×¶P-ABCDÖУ¬PA¡ÍÆ½ÃæABCD£¬µ×ÃæABCDÊDZ߳¤ÎªaµÄÁâÐΣ¬¡ÏBAD=120¡ã£¬PA=b£®
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæPBD¡ÍÆ½ÃæPAC£»
£¨¢ò£©ÉèACÓëBD½»ÓÚµãO£¬MΪOCµÄÖе㣬ÈôµãMµ½Æ½ÃæPODµÄ¾àÀëΪ$\frac{1}{4}b$£¬Çóa£ºbµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÒÑÖªABCDEFÊÇÕýÁù±ßÐΣ¬GA¡¢ND¶¼´¹Ö±ÓÚÆ½ÃæABCDEF£¬Æ½ÃæFGN½»Ïß¶ÎDEÓÚµãR£¬µãMÊÇCDµÄÖе㣬AB=DN=1£¬AG=2£®
£¨1£©ÇóÖ¤£ºAM¡ÎÆ½ÃæGFRN£»
£¨2£©Çó¶þÃæ½ÇA-GF-NµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬²àÃæPAB¡Íµ×ÃæABCD£¬µ×ÃæABCDÊDZ߳¤Îª2µÄÕý·½ÐΣ¬PA=PB£¬EΪPCÉϵĵ㣬ÇÒBE¡ÍÆ½ÃæPAC£®
£¨¢ñ£©ÇóÖ¤£ºPA¡ÍÆ½ÃæPBC
£¨¢ò£©Çó¶þÃæ½ÇP-AC-BµÄÕýÏÒÖµ£»
£¨¢ó£©ÇóµãDµ½Æ½ÃæPACµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔڵȲîÊýÁÐ{an}ÖУ¬ÒÑÖªa1=3£¬a4=5£¬Ôòa7µÈÓÚ7£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸