分析 (1)由已知化简可得a2=b2+c2-$\frac{1}{2}$bc,利用余弦定理即可求得cosA的值.
(2)由(1)结合同角三角函数基本关系式可求sinA的值,由a=2b,根据正弦定理可得:sinA=2sinB,可求sinB的值,利用同角三角函数基本关系式可求cosB,利用两角差的余弦函数公式即可求得cos(A-B)的值.
解答 (本题满分为12分)
解:(1)∵2a2=2b2+2c2-bc,可得:a2=b2+c2-$\frac{1}{2}$bc,
∴由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\frac{1}{2}bc}{2bc}$=$\frac{1}{4}$,…3分
(2)∵cosA>0,0<A<$\frac{π}{2}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\sqrt{1-\frac{1}{16}}$=$\frac{\sqrt{15}}{4}$…5分
由a=2b,根据正弦定理可得:sinA=2sinB,可得sinB=$\frac{1}{2}$sinA=$\frac{\sqrt{15}}{8}$,…7分
∵A>B,∴0<B<$\frac{π}{2}$,
∴cosB=$\sqrt{1-si{n}^{2}B}$=$\sqrt{1-\frac{15}{64}}$=$\frac{7}{8}$,…9分
∴cos(A-B)=cosAcosB+sinAsinB=$\frac{1}{4}×\frac{7}{8}$+$\frac{\sqrt{15}}{4}×\frac{\sqrt{15}}{8}$=$\frac{11}{16}$…12分
点评 本题主要考查了余弦定理,同角三角函数基本关系式,正弦定理,两角差的余弦函数公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<-2,或a>0 | B. | 0<a<1 | C. | 1<a<3 | D. | 2<a<6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{7}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com