精英家教网 > 高中数学 > 题目详情
12.定义R上的减函数f(x),其导函数f'(x)满足$\frac{f(x)}{f'(x)}<1-x$,则下列结论正确的是(  )
A.当且仅当x∈(-∞,1),f(x)<0B.当且仅当x∈(1,+∞),f(x)>0
C.对于?x∈R,f(x)<0D.对于?x∈R,f(x)>0

分析 f(x)是定义在R上的减函数,f′(x)<0,(f′(x)≠0).则$\frac{f(x)}{f'(x)}<1-x$,化为f(x)+f′(x)x>f′(x),可得[(x-1)f(x)]′>0,因此函数y=(x-1)f(x)在R上单调递增,对x分类讨论即可得出.

解答 解:∵f(x)是定义在R上的减函数,f′(x)<0,(f′(x)≠0).
∴$\frac{f(x)}{f'(x)}<1-x$,化为f(x)+f′(x)x>f′(x),
∴f(x)+f′(x)(x-1)>0,
∴[(x-1)f(x)]′>0,
∴函数y=(x-1)f(x)在R上单调递增,
而x=1时,y=0,则x<1时,y<0,
当x∈(1,+∞)时,x-1>0,故f(x)>0,
又f(x)是定义在R上的减函数,
∴x≤1时,f(x)>0也成立,
∴f(x)>0对任意x∈R成立.
故选:D.

点评 本题考查了利用导数研究函数的单调性、不等式的性质与解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知圆O:x2+y2=9,直线l1:x=6,圆O与x轴相交于点A,B(如图),点P(-1,2)是圆O内一点,点Q为圆O上任一点(异于点A、B),直线AQ与l1相交于点C.
(1)若过点P的直线l2与圆O相交所得弦长等于4$\sqrt{2}$,求直线l2的方程;
(2)设直线BQ、BC的斜率分别为kBQ、kBC,求证:kBQ•kBC为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=cos2x-$\sqrt{3}$sin2x,把y=f(x)的图象向左平移$φ({|φ|<\frac{π}{2}})$个单位后,得到的部分图象如图所示,则f(φ)的值等于(  )
A.$-\sqrt{3}$B.$\sqrt{3}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x$({{e^x}-\frac{1}{e^x}})$,若f(x1)<f(x2),则(  )
A.x1>x2B.x1<x2C.${x}_{1}^{2}$<${x}_{2}^{2}$D.x1+x2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题P:若△ABC为钝角三角形,则sinA<cosB;命题q:?x,y∈R,若x+y≠2,则x≠-1或y≠3,则下列命题为真命题的是(  )
A.p∨(?q)B.(?p)∧qC.p∧qD.(?p)∧(?q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将二项式${(x+\frac{2}{{\sqrt{x}}})^6}$展开式各项重新排列,则其中无理项互不相邻的概率是(  )
A.$\frac{2}{7}$B.$\frac{1}{35}$C.$\frac{8}{35}$D.$\frac{7}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=2,四棱锥P-ABCD的五个顶点都在一个球面上,则这个球的表面积是12π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若复数z满足$({\sqrt{2}+i})z=3i$(i为虚数单位),则z的共轭复数为(  )
A.$\sqrt{2}+i$B.$\sqrt{2}-i$C.$1+\sqrt{2}i$D.$1-\sqrt{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=2|x-1|-a.
(1)若存在x使不等式f(x)-2|x-7|≤0成立,求实数a的取值范围;
(2)当a=1时,不等式f(x)+|x+7|≥m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案