精英家教网 > 高中数学 > 题目详情
18.已知y=f(x)是定义在R上的函数,且f(2)=5,对任意的x都有f′(x)<$\frac{1}{2}$.则f(x)<$\frac{1}{2}$x+4的解集是(2,+∞).

分析 构造函数F(x)=f(x)-$\frac{1}{2}$x-4,则F′(x)<0,故而F(x)为减函数,且F(2)=0,从而得出F(x)<0的解集.

解答 解:设F(x)=f(x)-$\frac{1}{2}$x-4,
则F′(x)=f′(x)-$\frac{1}{2}$<0,
∴F(x)是减函数,
∵F(2)=f(2)-5=0,
∴当x>2时,F(x)<0,即f(x)<$\frac{1}{2}$x+4,
当x<2时,F(x)>0,即f(x)>$\frac{1}{2}$x+4.
故答案为:(2,+∞)

点评 本题考查了导数与函数单调性的关系,函数单调性与不等式的解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的长轴长为4,离心率为$\frac{{\sqrt{3}}}{2}$,右焦点为F(c,0).
(1)求椭圆C的方程;
(2)直线l与直线x=2交于点A,与直线x=-2交于点B,且$\overrightarrow{FA}$•$\overrightarrow{FB}$=0,判断并证明直线l与椭圆有多少个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为线段DD1,BD的中点.
(1)求异面直线EF与BC所成的角的正切值.
(2)求三棱锥C-B1D1F的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合M=|x|$\frac{x}{x-1}$≤0|,N=|x|0<x<2|,则M∩N=(  )
A.{x|0≤x<2 }B.{x|0<x<2}C.{x|0≤x<l}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(x-1,2),$\overrightarrow{b}$=(4,y),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则点P(x,y)到原点的距离的最小值为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列各数中,纯虚数的个数有(  )个.
$2+\sqrt{7}$、$\frac{2}{7}i$、0i、5i+8,$i({1-\sqrt{3}})$、$\frac{1}{1+i}$.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=alnx-ax-3(a∈R),求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=$\sqrt{tanx-\sqrt{3}}$的定义域[kπ+$\frac{π}{3}$,kπ+$\frac{π}{2}$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等差数列{an}的前n项和为Sn,若S5=30,S10=110,则S15=(  )
A.140B.190C.240D.260

查看答案和解析>>

同步练习册答案