分析 化简函数f(x),根据余弦函数的图象与性质即可求出函数f(x)的最小正周期与单调递增区间.
解答 解:函数f(x)=sin4x+cos4x=(sin2x+cos2x)2-2sin2xcos2x
=1-$\frac{1}{2}$sin22x
=1-$\frac{1}{2}$×$\frac{1-cos4x}{2}$
=$\frac{1}{4}$cos4x+$\frac{3}{4}$,
∴函数f(x)的最小正周期为T=$\frac{2π}{ω}$=$\frac{π}{2}$;
又函数y=cos4x的增区间为2kπ-π≤4x≤2kπ,
即-$\frac{π}{4}$+$\frac{kπ}{2}$≤x≤$\frac{kπ}{2}$,
∴函数f(x)=sin4x+cos4x的单调递增区间是[-$\frac{π}{4}$+$\frac{kπ}{2}$,$\frac{kπ}{2}$](k∈Z).
故答案为:$\frac{π}{2}$;[-$\frac{π}{4}$+$\frac{kπ}{2}$,$\frac{kπ}{2}$](k∈Z).
点评 本题考查了三角函数的恒等变换以及余弦函数的图象与性质的应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | >7 |
| p | 0.03 | 0.10 | 0.14 | 0.19 | 0.21 | 0.19 | 0.09 | 0.04 | 0.01 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com