分析 (1)取PD中点F,连结EF,CF,证明:四边形CBEF为平行四边形,可得BE∥CF,即可证明EB∥平面PCD;
(2)若PC=CD,证明CF⊥平面PAD,由(1)知BE∥CF,即可证明:BE⊥平面PDA.
解答
证明:(1)取PD中点F,连结EF,CF.
因为E为PA中点,F为PD中点,
所以EF∥AD且AD=2EF,
又因为BC⊥CD,AD⊥CD,
所以CB∥AD,
又由AD=2CB
所以EF∥CB,CB=EF,
所以四边形CBEF为平行四边形
所以BE∥CF,
又因为CF?平面PCD,BE?平面PCD
所以BE∥平面PCD;
(2)F为PD中点,PC=CD,
所以CF⊥PD,
因为PC⊥底面CBAD,
所以PC⊥AD,
又AD⊥CD,PC∩CD=C,
所以AD⊥平面PCD,
又CF?平面PCD,
所以AD⊥CF,
又PD∩AD=D,
所以CF⊥平面PAD,
由(1)知BE∥CF,
所以BE⊥平面PAD.
点评 本题考查线面平行、垂直的判定,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{15}$ | B. | $\frac{π}{12}$ | C. | $\frac{π}{16}$ | D. | $\frac{π}{18}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com