精英家教网 > 高中数学 > 题目详情
12.($\frac{64}{27}$)${\;}^{\frac{1}{2}}$+log3$\frac{10}{9}$+log3$\frac{9}{10}$=$\frac{8\sqrt{3}}{9}$.

分析 利用指数、对数的性质、运算法则求解.

解答 解:($\frac{64}{27}$)${\;}^{\frac{1}{2}}$+log3$\frac{10}{9}$+log3$\frac{9}{10}$
=$\frac{8}{3\sqrt{3}}$+$lo{g}_{3}(\frac{10}{9}×\frac{9}{10})$
=$\frac{8\sqrt{3}}{9}$.
故答案为:$\frac{8\sqrt{3}}{9}$.

点评 本题考查指数式化简求值,是基础题,解题时要认真审题,注意指数、对数的性质、运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图所示,四棱锥P-ABCD的底面为一直角梯形,BC⊥CD,CD⊥AD,AD=2BC,PC⊥底面ABCD,E为PA的中点.
(1)证明:EB∥平面PCD; 
(2)若PC=CD,证明:BE⊥平面PDA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知F是双曲线$C:{x^2}-\frac{y^2}{8}=1$的右焦点,P是C左支上一点,$A({0,6\sqrt{6}})$,当△APF周长最小时,点P的纵坐标为2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在锐角三角形ABC中,内角A,B,C的对边分别为a,b,c.且2sinB(ccosB+bcosC)=$\sqrt{3}$b
(1)求角A的大小
(2)若a=b,b+c=8,求△ABC的面积
(3)求sinB+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=a+$\frac{2}{{2}^{x}-1}$(a∈R)是奇函数
(1)利用函数单调性定义证明:f(x)在(0,+∞)上是减函数;
(2)若f(|x|)>k+log2$\frac{m}{2}$•log2$\frac{4}{m}$对任意的m∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex,x∈R.
(1)求f(x)的图象在点(0,f(0))处的切线方程;
(2)证明:曲线y=f(x)与直线y=ex有唯一公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数$f(x)=\left\{{\begin{array}{l}{lnx,x>0}\\{{a^x},x≤0}\end{array}}\right.$(a>0,a≠1).若f(e2)=f(-2),则实数a=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在等差数列中,a9=3,则此数列前17项和等于(  )
A.51B.34C.102D.不能确定

查看答案和解析>>

同步练习册答案