精英家教网 > 高中数学 > 题目详情
18.设a∈R,函数$f(x)=\frac{{{2^x}+a}}{{{2^x}+1}}$;
(1)求a的值,使得f(x)为奇函数;
(2)若$f(x)<\frac{a+2}{2}$对任意x∈R成立,求a的取值范围.

分析 (1)由f(x)在R上为奇函数,可得f(0)=0,解方程可得a的值,检验即可;
(2)由题意可得即为$\frac{{2}^{x}+a}{{2}^{x}+1}$<$\frac{a+2}{2}$恒成立,等价为$\frac{a-1}{{2}^{x}+1}$<$\frac{a}{2}$,即有2(a-1)<a(2x+1),讨论a=0,a>0,a<0,由参数分离,求得右边的范围,运用恒成立思想即可得到a的范围.

解答 解:(1)由f(x)的定义域为R,
且f(x)为奇函数,可得f(0)=0,
即有$\frac{1+a}{2}$=0,解得a=-1.
则f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,f(-x)=$\frac{{2}^{-x}-1}{{2}^{-x}+1}$=$\frac{1-{2}^{x}}{1+{2}^{x}}$=-f(x),
则a=-1满足题意;
(2)$f(x)<\frac{a+2}{2}$对任意x∈R成立,
即为$\frac{{2}^{x}+a}{{2}^{x}+1}$<$\frac{a+2}{2}$恒成立,
等价为$\frac{a-1}{{2}^{x}+1}$<$\frac{a}{2}$,
即有2(a-1)<a(2x+1),
当a=0时,-1<0恒成立;
当a>0时,$\frac{2(a-1)}{a}$<2x+1,
由2x+1>1,可得$\frac{2(a-1)}{a}$≤1,
解得0<a≤2;
当a<0时,$\frac{2(a-1)}{a}$>2x+1不恒成立.
综上可得,a的取值范围是[0,2].

点评 本题考查函数的奇偶性的运用:求参数的值,考查不等式恒成立问题的解法,注意运用分类讨论和参数分离的思想方法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知θ∈(${\frac{π}{2}$,π),$\frac{1}{sinθ}$+$\frac{1}{cosθ}$=2$\sqrt{2}$,则cos(2θ+$\frac{π}{3}}$)的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=sin({2x+φ})({|φ|<\frac{π}{2}})$的图象向左平移$\frac{π}{6}$个单位后关于y轴对称,则函数f(x)的一个单调递增区间是(  )
A.$[{-\frac{5π}{6},\frac{π}{12}}]$B.$[{-\frac{π}{3},\frac{π}{6}}]$C.$[{-\frac{π}{6},\frac{π}{3}}]$D.$[{\frac{π}{6},\frac{2π}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若关于x、y的方程组$\left\{\begin{array}{l}x+2y=4\\ 3x+ay=6\end{array}\right.$无解,则实数a=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设a、b∈R,若函数$f(x)=x+\frac{a}{x}+b$在区间(1,2)上有两个不同的零点,则f(1)的取值范围为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)={e^{x^2}}-2{x^2}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)在R上的导函数为f'(x),对于任意的实数x,都有f'(x)+2017<4034x,若f(t+1)<f(-t)+4034t+2017,则实数t的取值范围是(  )
A.$({-\frac{1}{2},+∞})$B.$({-\frac{3}{2},+∞})$C.$({-∞,-\frac{1}{2}})$D.$({-∞,-\frac{3}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=|x-2|+|x-a|,x∈R.
(Ⅰ)求证:当a=-1时,不等式lnf(x)>1成立;
(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=2,M、N分别是AB、A1C的中点.
(1)求证:MN∥平面BB1C1C;
(2)若平面CMN⊥平面B1MN,求直线AB与平面B1MN所成角的正弦值.

查看答案和解析>>

同步练习册答案