精英家教网 > 高中数学 > 题目详情
16.已知点A(-1,0,1),B(0,0,1),C(2,2,2),D(0,0,3),则向量$\overrightarrow{AB}$与$\overrightarrow{CD}$的夹角的余弦值为-$\frac{2}{3}$.

分析 先求出向量$\overrightarrow{AB}$,$\overrightarrow{CD}$,利用cos<$\overrightarrow{AB},\overrightarrow{CD}$>=$\frac{\overrightarrow{AB}•\overrightarrow{CD}}{|\overrightarrow{AB}|•|\overrightarrow{CD}|}$,能求出向量$\overrightarrow{AB}$与$\overrightarrow{CD}$的夹角的余弦值.

解答 解:∵点A(-1,0,1),B(0,0,1),C(2,2,2),D(0,0,3),
∴$\overrightarrow{AB}$=(1,0,0),$\overrightarrow{CD}$=(-2,-2,1),
∴cos<$\overrightarrow{AB},\overrightarrow{CD}$>=$\frac{\overrightarrow{AB}•\overrightarrow{CD}}{|\overrightarrow{AB}|•|\overrightarrow{CD}|}$=$\frac{-2}{1×\sqrt{9}}$=-$\frac{2}{3}$.
∴向量$\overrightarrow{AB}$与$\overrightarrow{CD}$的夹角的余弦值为-$\frac{2}{3}$.

点评 本题考查向量夹角的余弦值的求法,考查空间向量坐标运算法则、空间向量夹角余弦值计算公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,过椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$右焦点F的直线x+y-2=0交C于A,B两点,P为AB的中点,且OP的斜率为$\frac{1}{3}$.
(1)求椭圆C的标准方程;
(2)设过点F的直线l(不与坐标轴垂直)与椭圆交于D,E两点,若在线段OF上存在点M(t,0),使得∠MDE=∠MED,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知等差数列{an}中,a10=13,S9=27,则公差d=2,a100=193.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)定义域为R,命题p:?x1,x2∈R,(f(x1)-f(x2))(x1-x2)<0,则¬p是(  )
A.?x1,x2∈R,(f(x1)-f(x2))(x1-x2)>0B.?x1,x2∈R,(f(x1)-f(x2))(x1-x2)≥0
C.?x1,x2∈R,(f(x1)-f(x2))(x1-x2)≥0D.?x1,x2∈R,(f(x1)-f(x2))(x1-x2)<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,在正方体ABCD-A1B1C1D1中,已知棱长为a,M,N分别是BD和AD的中点,则B1M与D1N所成角的余弦值为(  )
A.$\frac{\sqrt{30}}{10}$B.$\frac{\sqrt{30}}{10}$aC.-$\frac{\sqrt{30}}{10}$D.$\frac{\sqrt{15}}{15}$a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.正数a、m、b构成公差为-$\frac{1}{2}$的等差数列,a,b的等比中项是2$\sqrt{5}$,则双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为(  )
A.$\frac{5}{3}$B.$\frac{\sqrt{41}}{4}$C.$\frac{5}{4}$D.$\frac{\sqrt{41}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点P(x,y)是曲线C上任意一点,点(x,2y)在圆x2+y2=8上,定点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l与曲线C交于A、B两个不同点.
(1)求曲线C的方程;
(2)求证直线MA、MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c.且满足ccos(2016π-A)-$\sqrt{3}$ccos($\frac{3π}{2}$-A)=a+b.
(1)求C的大小;
(2)若a=3,b=4.试求$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点A,B,C在圆x2+y2=4上运动,且AB⊥BC.若点P的坐标为(3,4),则$|{\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}}|$的取值范围为(  )
A.[10,15]B.[12,17]C.[13,17]D.[15,17]

查看答案和解析>>

同步练习册答案