精英家教网 > 高中数学 > 题目详情
7.已知等差数列{an}中,a10=13,S9=27,则公差d=2,a100=193.

分析 利用等差数列的通项公式与求和公式即可得出.

解答 解:等差数列{an}中,a10=13,S9=27,
∴a1+9d=13,9a1+$\frac{9×8}{2}d$=27,
解得a1=-5,d=2.
a100=-5+99×2=193.
故答案为:2,193.

点评 本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.“实数a、b、c不全为0“含义是(  )
A.a、b、c均不为0B.a、b、c中至少有一个为0
C.a、b、c中至多有一个为0D.a、b、c中至少有一个不为0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若三棱锥P-ABC的三个侧面与底面ABC所成角都相等,则顶点P在底面的射影为△ABC的(  )
A.外心B.重心C.内心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.要做一个圆锥形漏斗,其母线长为15cm,要使其体积最大,则其高应为(  )
A.$10\sqrt{3}cm$B.$8\sqrt{3}cm$C.$6\sqrt{3}cm$D.$5\sqrt{3}cm$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知平面向量$\overrightarrow a$和$\overrightarrow b$的夹角等于$\frac{π}{3}$,$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,则$|{\overrightarrow a-2\overrightarrow b}|$=(  )
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=1,an+1=$\frac{1}{4}$an2+p.
(1)若数列{an}就常数列,求p的值;
(2)当p>1时,求证:an<an+1
(3)求最大的正数p,使得an<2对一切整数n恒成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx+$\frac{a}{x}$.
(1)当a<0时,证明函数f(x)在(0,+∞)是单调函数;
(2)当a<e时,函数f(x)在区间[1,e]上的最小值是$\frac{4}{3}$,求a的值;
(3)设g(x)=f(x)-$\frac{a}{x}$,A,B是函数g(x)图象上任意不同的两点,记线段AB的中点的横坐标是x0,证明直线AB的斜率k>g'(x0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点A(-1,0,1),B(0,0,1),C(2,2,2),D(0,0,3),则向量$\overrightarrow{AB}$与$\overrightarrow{CD}$的夹角的余弦值为-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x,g(x)=lnx
(1)若函数F(x)=g(x)+af(x)有两个零点时,实数a的取值范围为A,方程$g(x)-{[{1-f(x)}]^2}+(1-f(x))=\frac{b}{x}$有实根时,实数b的取值集合为B,求A∩B.
(2)若函数G(x)=af(x)2-(a+2)f(x)+g(x),其中a∈R.,当a>0时,若f(x)在区间[1,e]上的最小值为-2,求实数a的取值范围;
(3)已知?x1,x2∈(0,+∞),且x1<x2,若G(x1)+2x1<G(x2)+2x2恒成立,求实数a的取值范围.
(4)函数$h(x)=\frac{g(x)}{f(x)}-m,(m∈R)$,若h(x)的两个零点分别为x1、x2,求证${x_1}{x_2}>{e^2}$.

查看答案和解析>>

同步练习册答案