精英家教网 > 高中数学 > 题目详情
18.若三棱锥P-ABC的三个侧面与底面ABC所成角都相等,则顶点P在底面的射影为△ABC的(  )
A.外心B.重心C.内心D.垂心

分析 作出三个二面角,利用三角形全等得出O到△ABC的三边距离相等,得出结论.

解答 解:设P在底面ABC的射影为O,过O向△ABC的三边作垂线OD,OE,OF,
连结PD,PE,PF,
∵PO⊥平面ABC,AB?平面ABC,
∴PO⊥AB,又OD⊥AB,OD∩OP=O,
∴AB⊥平面OPD,∴AB⊥PD,
∴∠PDO为侧面PAB与平面ABC的二面角,
同理∠PEO,∠PFO为其余两侧面与底面ABC的二面角,
∴∠PDO=∠PEO=∠PFO,
又PO⊥OD,PO⊥OE,PO⊥OF,PO为公共边,
∴Rt△POD≌Rt△POE≌Rt△POF,
∴OD=OE=OF,
∴O是△ABC的内心.
故选C.

点评 本题考查了棱锥的结构特征,线面垂直的判定,二面角的做法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知a=2${\;}^{-\frac{1}{3}}$,b=log${\;}_{\frac{1}{4}}$3,c=log25,则(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从装有3个黑球和3个白球(大小、形状相同)的盒子中随机摸出3个球,用ξ表示摸出的黑球个数,则P(ξ≥2)的值为(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{2}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,过椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$右焦点F的直线x+y-2=0交C于A,B两点,P为AB的中点,且OP的斜率为$\frac{1}{3}$.
(1)求椭圆C的标准方程;
(2)设过点F的直线l(不与坐标轴垂直)与椭圆交于D,E两点,若在线段OF上存在点M(t,0),使得∠MDE=∠MED,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)为R上的可导函数,且?x∈R,均有f(x)+f'(x)<0,则以下判断正确的是(  )
A.e2017•f(2017)>f(0)B.e2017•f(2017)=f(0)
C.e2017•f(2017)<f(0)D.e2017f(2017)与f(0)的大小无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知圆C:x2+y2-4x-14y+45=0及点Q(-2,3)
(1)若点P(m,m+1)在圆C上,求直线PQ的斜率以及直线PQ与圆C的相交弦PE的长度;
(2)若N(x,y)是直线x+y+1=0上任意一点,过N作圆C的切线,切点为A,当切线长|NA|最小时,求N点的坐标,并求出这个最小值.
(3)若M(x,y)是圆上任意一点,求$\frac{y-3}{x+2}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)已知函数$f(x)=\frac{x}{sinx}$求${f^'}(\frac{π}{2})$
(2)求曲线$y=cosx({0≤x≤\frac{3π}{2}})$与x轴以及直线$x=\frac{3π}{2}$所围图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知等差数列{an}中,a10=13,S9=27,则公差d=2,a100=193.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点P(x,y)是曲线C上任意一点,点(x,2y)在圆x2+y2=8上,定点M(2,1),平行于OM的直线l在y轴上的截距为m(m≠0),直线l与曲线C交于A、B两个不同点.
(1)求曲线C的方程;
(2)求证直线MA、MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

同步练习册答案