精英家教网 > 高中数学 > 题目详情
6.在平面直角坐标系xOy中,过椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$右焦点F的直线x+y-2=0交C于A,B两点,P为AB的中点,且OP的斜率为$\frac{1}{3}$.
(1)求椭圆C的标准方程;
(2)设过点F的直线l(不与坐标轴垂直)与椭圆交于D,E两点,若在线段OF上存在点M(t,0),使得∠MDE=∠MED,求t的取值范围.

分析 (1)设A(x1,y1),B(x2,y2),利用平方差法,结合$\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=-1$,设P(x0,y0),推出a2=3b2,结合c=2然后求解椭圆C的方程.
(2)设线段DE的中点为H,说明MH⊥DE,设直线l的方程为y=k(x-2),代入椭圆C的方程为$\frac{x^2}{6}+\frac{y^2}{2}=1$,设D(x3,y3),E(x4,y4),利用韦达定理求出H的坐标,通过kMH•kl=-1,求解即可.

解答 解:(1)设A(x1,y1),B(x2,y2),则$\frac{x_1^2}{a^2}+\frac{y_1^2}{b^2}=1,\frac{x_2^2}{a^2}+\frac{y_2^2}{b^2}=1$,
相减得,$\frac{{({{x_1}-{x_2}})({{x_1}+{x_2}})}}{a^2}+\frac{{({{y_1}-{y_2}})({{y_1}+{y_2}})}}{b^2}=0$,由题意知$\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=-1$,
设P(x0,y0),因为P为AB的中点,且OP的斜率为$\frac{1}{3}$,所以${y_0}=\frac{1}{3}{x_0}$,即${y_1}+{y_2}=\frac{1}{3}({{x_1}+{x_2}})$,
所以可以解得a2=3b2,即a2=3(a2-c2),即${a^2}=\frac{3}{2}{c^2}$,又因为c=2,∴a2=6,
所以椭圆C的方程为$\frac{x^2}{6}+\frac{y^2}{2}=1$.
(2)设线段DE的中点为H,因为∠MDE=∠MED,所以MH⊥DE,
设直线l的方程为y=k(x-2),代入椭圆C的方程为$\frac{x^2}{6}+\frac{y^2}{2}=1$,
得(3k2+1)x2-12k2x+12k2-6=0,
设D(x3,y3),E(x4,y4),则${x_3}+{x_4}=\frac{{12{k^2}}}{{1+3{k^2}}}$.
则${x}_{H}=\frac{{x}_{3}+{x}_{4}}{2}=\frac{6{k}^{2}}{1+3{k}^{2}}$,${y}_{H}=k({x}_{H}-2)=-\frac{2k}{1+3{k}^{2}}$,即$H({\frac{{6{k^2}}}{{1+3{k^2}}},\frac{-2k}{{1+3{k^2}}}})$,
由已知得kMH•kl=-1,∴$\frac{{\frac{-2k}{{1+3{k^2}}}}}{{\frac{{6{k^2}}}{{1+3{k^2}}}-t}}=-\frac{1}{k}$,整理得$t=\frac{{4{k^2}}}{{1+3{k^2}}}=\frac{4}{{3+\frac{1}{k^2}}}$,
因为k2>0,所以$t∈({0,\frac{4}{3}})$,
所以t的取值范围是$({0,\frac{4}{3}})$.

点评 本题考查椭圆方程的求法,直线与椭圆的位置关系的应用,范围问题的解决方法,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.执行如图所示的语句,结果为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“实数a、b、c不全为0“含义是(  )
A.a、b、c均不为0B.a、b、c中至少有一个为0
C.a、b、c中至多有一个为0D.a、b、c中至少有一个不为0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列推理正确的是(  )
A.∵a>b(a,b∈R),∴a+2i>b+2i(i是虚数单位)
B.若f(x)是增函数,则f'(x)>0
C.若α,β是锐角△ABC的两个内角,则sinα>cosβ
D.若A是△ABC的内角,且cosA>0,则△ABC为锐角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.生产工艺工程中产品的尺寸偏差X(mm)~N(0,22),如果产品的尺寸与现实的尺寸偏差的绝对值不超过4mm的为合格品,求生产5件产品的合格率不小于80%的概率.(精确到0.001)((0.954 4)5≈0.791 9;(0.954 4)4≈0.8297)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知空间四边形ABCD中,AB=BD=AD=2,BC=1,$CD=\sqrt{3}$,若平面ABD⊥平面BCD,则该几何体的外接球表面积为$\frac{16π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若三棱锥P-ABC的三个侧面与底面ABC所成角都相等,则顶点P在底面的射影为△ABC的(  )
A.外心B.重心C.内心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.要做一个圆锥形漏斗,其母线长为15cm,要使其体积最大,则其高应为(  )
A.$10\sqrt{3}cm$B.$8\sqrt{3}cm$C.$6\sqrt{3}cm$D.$5\sqrt{3}cm$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点A(-1,0,1),B(0,0,1),C(2,2,2),D(0,0,3),则向量$\overrightarrow{AB}$与$\overrightarrow{CD}$的夹角的余弦值为-$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案