精英家教网 > 高中数学 > 题目详情
14.下列推理正确的是(  )
A.∵a>b(a,b∈R),∴a+2i>b+2i(i是虚数单位)
B.若f(x)是增函数,则f'(x)>0
C.若α,β是锐角△ABC的两个内角,则sinα>cosβ
D.若A是△ABC的内角,且cosA>0,则△ABC为锐角三角形

分析 根据虚数,增函数,三角函数的概念逐一判断即可.

解答 解:A中虚数无法比较大小,故错误;
B中根据导函数的概念可知,若f(x)是增函数,则f'(x)≥0,故错误;
C中,若α,β是锐角△ABC的两个内角,
∴α+β>$\frac{π}{2}$,
∴sinα>sin($\frac{π}{2}-β$)=cosβ,故正确;
D中若A是△ABC的内角,且cosA>0,则A为锐角,但△ABC不一定为锐角三角形,故错误.
故选C.

点评 本题考查虚数,增函数,三角函数的概念,属于基础题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数$f(x)=3sin(ωx+\frac{π}{6}),ω>0,x∈R$的最小正周期为$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)利用“五点作图法”,画出f(x)在长度为一个周期的闭区间上的简图;
ωx+$\frac{π}{6}$
x
f(x)

(3)已知$f(\frac{α}{4}+\frac{π}{12})=\frac{9}{5}$,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在区间[0,2]上分别任取两个数m,n,若向量$\overrightarrow{a}$=(m,n),$\overrightarrow{b}$=(1,1),则|$\overrightarrow{a}-\overrightarrow{b}$|≤1的概率是(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列几何体中为棱柱的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从装有3个黑球和3个白球(大小、形状相同)的盒子中随机摸出3个球,用ξ表示摸出的黑球个数,则P(ξ≥2)的值为(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{2}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.光线从A(-3,4)点出发,到x轴上的点B后,被x轴反射到y轴上的C点,又被y轴反射,这时反射光线恰好过D(-1,6)点,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,过椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$右焦点F的直线x+y-2=0交C于A,B两点,P为AB的中点,且OP的斜率为$\frac{1}{3}$.
(1)求椭圆C的标准方程;
(2)设过点F的直线l(不与坐标轴垂直)与椭圆交于D,E两点,若在线段OF上存在点M(t,0),使得∠MDE=∠MED,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知圆C:x2+y2-4x-14y+45=0及点Q(-2,3)
(1)若点P(m,m+1)在圆C上,求直线PQ的斜率以及直线PQ与圆C的相交弦PE的长度;
(2)若N(x,y)是直线x+y+1=0上任意一点,过N作圆C的切线,切点为A,当切线长|NA|最小时,求N点的坐标,并求出这个最小值.
(3)若M(x,y)是圆上任意一点,求$\frac{y-3}{x+2}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)定义域为R,命题p:?x1,x2∈R,(f(x1)-f(x2))(x1-x2)<0,则¬p是(  )
A.?x1,x2∈R,(f(x1)-f(x2))(x1-x2)>0B.?x1,x2∈R,(f(x1)-f(x2))(x1-x2)≥0
C.?x1,x2∈R,(f(x1)-f(x2))(x1-x2)≥0D.?x1,x2∈R,(f(x1)-f(x2))(x1-x2)<0

查看答案和解析>>

同步练习册答案